MANO08006.250519

YA\

A\ 1INS 4

motion Control

BCC Communication Protocol v 3.10

© 2025 Robox SpA

The content of this document is prepared with the utmost care/diligence, and subjected to careful control.
Robox Spa, however, disclaims all liability, direct and indirect, to users and in general to any third party, for any
inaccuracies, errors, omissions, damages (direct, indirect, consequential, punishable and sanctionable) resulting from the
aforementioned contents

Contents 3

Table of contents

Parte | General 8
I 1= = - LT e = 8
2 ProtocCol CONVENLIONSc.iiiiiieiiiiiiiiicircir s s s s s r s rn s rn s s s s s rasnassmasemnsannss 8
3 Protocol specifications ..o e 9
4 Monitor SpPecCifiCatioNSsccoceiiiiiii i s 1
5 Oscilloscope specCifiCationsccceiieiiieiiiiiiii s r e r e rrnn s 13
6 Transfer SPecifiCatioNscoeiiiiiii i e 14

Parte Il Messages
1 Alarm handlingcceieiii s e r e e e s s e e ra e ra e rnrnarnrrnns

Command for alarm history
Command for alarm StacK ... ————————————
Get alarm RISTOTY ... s
Get Alarm SEACKccciiiie i
Get enhanced alarm hiStory ... ————————————
QUETY AlAarM RNISTOTY ..t e bR n e
Query alarm stack information
Query all alarm stack eNtries ... ————————
Query single alarm stack entry .
Reset alarm StacCK ... ——————
LT T =Y i | =T

2 Date/Time handlingcccccoireiiieiiiiiii e e r s rn e s e e e rn s rna s smnsem s rmnrnnnns

Get current date and time

Set current date and time
3 Debug and process handlingcccceuiiieiimiiiiiir 39

Add abreakpoint ... e me e nn e
Data format for process contents inspection ...
Data format for process debug context ... ————
Debug SeSSioN WatCh=d0g ..o s mn e
Delete @ BreakpPoint ... ae e ne s
Execute a proCess COMMANMccoicoiiiiiiiimiiririer s e s e s n e s e e ae s me e e e asmnennns
Execute a process debug command i
Inspect contents Of @ ProCESS ...
List available remote ProCeSs ... e e
List defined breakpoints
LI T3 oY o [e 0 ¢ Lo 1N
List OS attached fUNCLIONS ..o —————————
Query debug context fOr @ ProCess ... ——————————
Query information for a breakpoint ... ———————————
Query process flash information
Query process iNfOrmMation ... ————————————————
Query runtime status for ProCess ... ————————
Query status for @ breakpoint ... —————————————
Query trace information for ProCess ... ————————————
Start @ debUQG SESSION ... e e e
£33 oY o3 W e [o 10 e BT Lo

4 Device handlingcooceuiiiiiiiiiiir e

© 2025 Robox SpA

BCC Communication Protocol v 3.10

Begin @n OOW SE@SSION ...cicuiiieirieiiiissiississ s s ss s s s s s e s e s s e e e ae e e s eae bR e s aebn e e R e s R e e e a 72
ENd @N OOW SE@S SION ...oiueiiiiiiiiiiiiiss s s s s s s a e e e s s e e e ae e e s eae bR e e a e b n e e R e s R e e e a 73
Execute a generic ASCIH COMMANGcciiiiimiimnnini s s n s 73
LT LY A T T T = L 4o X - 74
Query info for an OOW S@SSIONccceiiiriiiiiir i s s s s ae s s eae s a e nesane s 74
Query system iNfOrmation ... ————————————————— 75
Request @ CIMOS ram FeS etcoccciiieciiiiriiirissiessis s s s ses s sas s s e s sas s s sas e s s s e s ns e e smn e s s s e s s snnensmnnasannsssns 81
Request @ hardware reset ... —————— 81
Request @ SOftWare reset ... ——————— 81
Request device auto configuration ... —————————— 82
ReSO0IVE @/ProC ODJECE ... ———————————— 82
Set current mode

5 Field bus device handlingc.coeiiiiieiiiiii s s s e s e e e s ran s 84
Field bus supported interface type IDS ... s ne s 85
Filed bus @ntry data tyPes ... e 85
Force NMT status to EtherCAT INterface ... 86
Read an entry from CANOpPen INterface ... 87
Read an entry from EtherCAT (COE) INterface ... 90
Read an entry from Local Interface
Read interface information ... s
Read NMT status from CANopen INterface ... 96
Read NMT status from EtherCAT INterface ... 97
Read NMT status from Local INterface ... s 98
Write an entry to CANOPEN INtErface ... s s 99
Write an entry to EtherCAT (COE) INterface ... e 102
Write an entry to Local interface ... e e 104
Write an extended entry to CANopen INterface ... 106
Write an extended entry to EtherCAT (COE) Interface ... 109
Write an extended entry to Local interface ... s 112
Write interface infOrmation ... e 114
Write NMT command to CANopen INterface ... e 115
Write NMT command to Local Interface

6 Field bus handlingcciiiiiiiiiiii
Query CANopen C402 information ... s
Query CANopen EMCY message information ... e 119
Query Robox CANopen channel diagnostic 120
Query Robox CANopen workstation diagnostic ... 121
Read a CANOPEN EMCY MESSAGE ...ovceriiueririeiiriirsses s sssss s s s sas s s s s s sss s sas s s sa s s sas s ss s s ms s smsnssannsas 124
Read @ CANOPEN ODBJECE ...t s 125
L == Lo = T 00 o o - o 126
Read an EtherCAT NMTccoccnirirnnunnns ... 128
Read data from Tx/RX CANOPEN PDOoiiiioieriisieerssssssesssssmessssssssssssssssssssssssssessssssnsssssssnssnssssssnessans 129
Read one or more CANOPEN NIMT ... ccceiiiicierrssssressssssesssssms e ssssssnn e s ssssnnesssssssnessssssnsssssssnsenssssnnnssans 130
Write @ CANOPEN ODBJECE ...t e e e e e e e s 132
LA L LTI TO 0 1 oY [2 133
L L T T = =T 0 135
Write one or more CANOPEeNn NMTiiiieiicrcirrrssssse s ss s sss e s s sssne s s s sms e e e s sann e s sessnme e eessmnenesnssnnesenssnne 136

A = X T T 14 e | 74T Y 136
Create aflash fOlder ... s 137
Create and initialize flaShes ... 138
Delete @ flash fOlAEr ... s s s 140
Delete files from aflash fOlder ... 140

Format a flash

© 2025 Robox SpA

Contents 5

Load afile to @ flash fOlA@To e nn s 142
Manage flash volumes 146
Query contents from a flash fOlder ... 148
Query information of afile in @ flash folder ... 150
Query information of @ flaSh ... e ne e nen 153
Query information of a flash by folder ... ————— 155
Query information of a flash folder
QUETY list Of fIASNES ...occcecieccrccrc s e e s e e e e e e s se e ne e ne e eneenennnenanenns
Query tree of flash fOIUEIS ... s mn e e s nn s
Rename afile in @ flash fOlder ... s s
Save afile from aflash fOlAETr e s
Set attributes in a flash folder ...

8 General handlingccoceiiiiiiiii
L2 1@ TN 3 1 T | T T

Lo o o7 = 1] o 10 L o2 4 =T | 3 =)
Lo o o7 = 1] o 10 L AT Vo o B <«
Force output Channel ... et rs s sn e s s e e e e ee s n e e e e s nme e ee s mnnnesnnnnnnnns
Force output word 16bit
Get INPUL CRANNEI ... s s rs s r e e e sme e e e s s an e e e s s s snne e eassanneeessasnenesnssnnnnssssnnnnns
(€ T=Y 1 4T o T E R A o B -] o | S
L€ 1=y o U3 T U3 e o = 41 1= SR
(€T Ao 0N« T U Y TV o o] o
Release all input channel

Release all output channel
Release iNput ChanNEel ... e rs s sne e s mn e s ea s n e e e e s nne e ee s mn e e e s s nnnnnnns
Release input Word 16Dt ..o e e s e s sse e smn e e se s s e e e e nme e ee e e e e s nnnennann
Release output ChaNNE| ... e s s s sn e e s s e e e e s n e e e e s nme e ee s mn e e e e s nnnnnnans
Release output word 16bit
ST Ao TR o T 0§ e o P 141 1=
ST Ao TR o TU Y TV o o] o S

10 Ladder diagram handlingcccoieiiiiimiiiiiiie e e s s rrrn s nsn s nrnsnasnnsnnsnnsnns

Cancel liVe ChaNEs ... e

Confirm live ChANGES ...

Load a ladder task t0 MeMOrY ... 180
Load live changesccecucu..e.
Query ladder monitor status
Restart ladder MONItOr ...

Save a ladder task from MeEMOrY ... ————————————— 184
Start ladder MONIOr ... ———— 184
Start live changes testing .
£5T 00 o F- Te [T=F gy 1 1o Y011 o T N 188
Watchdog for ladder MORNItor ... 188
Watchdog for [ive Changes ... 189

11 Monitor handlingc.oceiieiiiiiir i rm e s rr s e s s n s s s s rarra s rnasrnnsennsnnnrnnns

L0 =1 L= T 1 1o T 11 S
[=53 o} V= T 14 Te T 4 T o T
Query a monitor status ..

Query list of monitors

QUETY MONILOr SEALISTICS ...ceeceicirceircerceercrr s s se e s s e e e e s e e e e e e e e e e e neeenneenesennnneasnenannnns 193
LT T 1o 411 e 193
15 T A T4 0T o 1 o 194
Stop a monitor 195
Watchdog fOr @ MONItOr ..o s n e sn e 196

© 2025 Robox SpA

BCC Communication Protocol v 3.10

L4 = T 0T 4T N 196
12 Network handlingc.ooeiieiiiiiiiii s s s s s s s s s ra s ra s sna s rnnsennsransnnns 197
L0 = T T T Y= T T=X AV o QT 1= - 198
Create @ NEW NELWOIK USET ... ee s s s e s sas s ean s n e s s me e s s e e mn e s s ns e s mn e e smnessannnan 199
Delete @ NEIWOIK USEI ...t e s n e e e s e e e n e s mn e e e e ann s 199
Kill a network client 200
LA = AT o o 1 o | 200
LA = AT o o 1 o o o T U L 200
Query a keep alive session information of a network client ..., 201
Query list of NEtWOrK ClieNts ... —————————— 202

Query list of network users ...
Query network information
Query Nnetwork statistics ... ———————————————

Start a keep alive session for a network client ... ——— 205
Stop a keep alive session for a network client ... 206

13 Oscilloscope handlingcoceuiiiieiiiiiin

Create an OSCIlIOSCOPEceiiiiiiiirri e rr s e rs s e e s s s es s s e e e s s s sm e e ee s s san e e e s s ssnne e sassnnneeessannenesnssnnnnnsssnnnnns
Destroy a oscilloscope ...
£53 2T = T T e T3 e || o= oo o -
£53 e o 3= T T e T=3 e | [Lo =3 o o o - S
Query an 0SCilloSCOPEe StAtUSccciveiiiirnin e ——————————
Query list of 0SCIllOSCOPESoiviiieiriinirr e —————————
Query oscilloscopes statistics ..
Watchdog for an oscilloscope
14 Protocol handlingccooeiiiiiiiiiiiiiic s s e s e s nrn s nrn s n e rnsnnsnnsnnsnnrnns

Debug COMMANG ... e
L 1T T T T3 =T
PiNg COMMANG ..o e R s a e R SRR R e

15 Register handlingoccoiveiiiiiiii s e e s r s s s ra s rra s rna s rnnsennnrnnrnnns

Get 16bit integer regisSter ... ——————————————————
Get 32bit integer regiSter ... —————————————————
Get Float r@GIStOr ..ot ——————
Get real FEISTEr ..ot
Get string register
Set 16bit integer regisSter ... —————————————
Set 32bit integer regisSter ... ————————————————
Set float regiSter ... —————————————————————
Set real re@iSter ..o ————————————————
Set string register

16 Report handling ..o

L0207 041 41T 4 e I8 0T g (L= o o o
Command fOr SYSt@M FEPOIt ... n e ane s
Get rePort CONEENTES ... n s n s n e an e an e s ane s
Get system report CONLENES ...
Query report iNformation ... ———————————————
Query system report information ...

I 3 o = = 3T | s T N

Begin a group authority SE@SSION ...

Command for an object in a group autority S€SSION ... ——— 233
End a group authority session
Get information for an axes group
Get positions fOr @an aXes GroUP ... e an e ann s

© 2025 Robox SpA

Contents 7

Jog command for an object in a group autority SESSION ... 238
List available aXes groUPScccciiiiiiiiiiiiini s s s e e 239
Load an object to a group authority S€SSIoN ... ———— 241
Query status for a object in a group authority SESSION ... 242
RESOIVE QN @XES GIOUP ..eoieiieiiiiiiiiiini e e e s b s e e R Rn e e R paR e R R e e 244
Save an object from a group authority S€SSioN ... —— 245
Update positions for an object's step inline point in a group autority sessioncccceccnnuueen. 246
Update positions for an object's point in a group autority sessioncccccccriccmrccrncccnsccenscenns 247
Watchdog for group authority session
18 Variable handling ..o

Enumerate variables ... e
FOrce @ Variableot an e ne s
Force a variable (Saf@) ...
LR == o - =T -1 -
Read a variable (safe)
Register a dynamic variable ...

Release @ variable ...
Release a variable (SAfe) ...
Release all variables ... —————
Release all variables (Saf@) ... e
Un-register a dynamic variable ... e
Un-register all dynamic variables
Write a variableccocvmiieninniecnnnn,
Write @ variable (Saf@)cccicciiiiiii i

Parte Ill Network interfaces

1 Network interfaces ... e 272
2 Ethernet network eXamplecooccoiiiiieiiiiirr e s e e e r e e nan 272
3 Modem Network eXample ... s s s s s e s r s ra s na e e 273
Parte IV Miscellaneus 273
1 MESSAGES MAP 1uuiruiruireuirnrrasrrasrrasreasrnsrnssrnssrnssrasrnssrnssrnsssnsssnssnnssenssnsssnnssnnsensssnssennsnnns 273
2 17X 0 Q=Y ¢ o T G o Yo - 283
3 Standard variables ... e e e e e 289

Index 303

© 2025 Robox SpA

BCC Communication Protocol v 3.10

General
General index

Messages categories:

Alarm handling[23"
Date/time handling[s
Debug and process handling[s
Device handling[7M

Field bus device handling[s"
Field bus handling[+

Flash handling[

General messages|is4)

1/0 handling[eh

Ladder diagram handling[+3)
Monitor handling[+)
Network handling[n
Oscilloscope handling[208)
Protocol handling[2id
Register handling[21®)

Report handling[25

RPE handling[2s

Variable handling [

Protocol conventions
BCC communication protocol conventions, related to the manual itself.

Primitive data types

Protocol specifications:

e Protocol specification[9N
 Monitor specifications[+"

e Oscilloscope specifications| 3%
e Transfer specifications[+aN

e Messages maplz3)
e NACK error codes 23

e Standard variables[2s3)

Other information:
¢ Protocol conventions[sN

e Network interfaces[z72)

Here a list of the primitive data types used by this manual, referring a Intel386 hardware
system.

Label Size

us 1

ule

I16

132

2
2
u32 4
4
8

ue4

Description
Unsigned 8bit value
Unsigned 16bit value
Signed 16bit value
Unsigned 32bit value
Signed 32bit value

Unsigned 64bit value

© 2025 Robox SpA

General 9

Label Size Description

164 8 Signed 64bit value

FLT 4 Floating point (C float format,
IEEE)

DBL 8 Floating point (C double
format, IEEE)

B 1 Byte (or character), like U8

VAR 10 BCC3 variable

STRZ ? ASCII string, zero termined

When using a data type, the following symbol [n] means a linear array of N items of that
data type: if N is omitted, means a dynamic array.

BCC3 variable type

A BCC3 variable is a 10 byte structure that identify one or more value of the same type on
device: the variable can be used either to read value and to write value.

Type IdData,
(2byte) (8byte)
Where:

e Type identify a unique variable type
e IdData contains information for identifying a specific (or group of) variable of that type.

The IdData has no a specific format and will depend from Type value, that have the
following mapping standard

From To Description

0x0000 0x0063 Reserved

0x0064 Ox4FFF Standard variables[29
0x5000 Ox7FFF Reserved

0x8000 Ox9FFF User defined variables
0xA000 OxFFFF Reserved

Protocol specifications

The BCC communication protocol has been designed in order to have an efficient
communication protocol between Robox devices and Robox application and development
tools.

Typical usage

This protocol is never used directly over a communication device but is carried by a lower
level transport layer: normally we use our DLE/CRC16 transport layer.

© 2025 Robox SpA

10

BCC Communication Protocol v 3.10

This protocol is intended to be used as a point-to-point communication: multi-point
communication is available, for example, by using in conjunction the BCC protocol over
TCP/IP network connection.

Message format

The BCC message is divided into two parts:

 an header[+o", of a fixed length, that contain all routing information and message content;

« an optional data areal+"), whose size in contained in header, that contain message
specific data.

Message header

The BCC message header is a fixed 9 byte structure with the following informations:

Type Label Description

us DST Destination ID

us DCH Destination channel ID
us SRC Source ID

us SCH Source channel ID
ulé6 MSG Message code

us8 LEN Data size (byte)

us PID Protocol ID

us RES Reserved (ex DLC)

Destination fields (DST,DCH)

These information area used to route the message correctly to the message target.

Source fields (SRC,SCH)

These information are used by the receiver to send answer or other messages back to the
sender.

More about destination and source

DST is not intended as target device number, but is only used internally by the software to
route correctly the message itself. By default, DST has the following meaning:

e 0x00 is used to route to a local connection (begin-point)

e 0x01 is used to route to the end-point connection

e 0x02 is used to route to a socket connection (begin-point)

e 0x03 is used to route special commands for network end-point
e 0x04 to OX7F are reserved to Robox

e 0x80 to OxFF are available for user applications

An example:

If you connect your PC to an RBXM via RS232 standard cable, the begin-point is the PC and
the end-point is the RBXM.

© 2025 Robox SpA

General 1

When you want to send a message from PC to the RBXM, from a local connection (SRC=0, a
begin-point) you send it to (DST=1, the end-point): channel ID are depending on the
message type. Note that 0 and 2 area both begin-point.

When an answer come from the end-point, DST and SRC are swapped, so the message is
routed back to the local connection (DST=0, begin-point) to the correct original sender. The
same example could be applied to the socket connection too.

The DCH field normally is 0 if the message is a new request, or other value as requested by
particular group or sequence of messages

Message code (MSG)

This code identify the meaning of the message, and can have a range from 0 to 0x7FFF: the
15th bit is reserved to be used as reply flag: is that message is not handled and the bit is
on, a nack or error reply will occur, otherwise if bit is not set the message is simply lost. This
bit should avoid some dead-loop condition.

To have more information about the message, see the messages specification.

Note: in message documentation, when the reply bit is required, the message code is
printed as 'AS + <msgcode>' (AS indicate the 0x8000 bit), otherwise only <msgcode> is
printed.

Data size (LEN)

Specify how many bytes of data are following the message header: if 0, the message has
no data. The LEN field can have a value between 0 and 255.

Protocol ID (ID)

This field can be used to avoid wrong and confusing answer for some messages, especially
to distinguish multiple answer from multiple query. Normally is used as a cyclic value from 0
to 255.

For each command message (especially type Ack/Nack), the answer PID must be the same
of the request, otherwise the answer will be invalidated.

Reserved (RES)

This field (ex DLC) is now reserved for future use.

Please use OxFF has default value in order to avoid troubles with existing communication
devices.

Message data area

The message data area is optional: if not present, the LEN field in the message headeris 0.
otherwise it specify the exact size in bytes.

The message data area is always transmitted immediately after it's header: an incoming
message should not be considered completed until it's full data area (if present) has been
received.

Unused or reserved fields inside data area (and data size field) must be zero filled.

Monitor specifications

When you need to receive a group of data (variables) at fixed frequency from a connected
device, the ideal solution is to program and play a realtime variable monitor. This will send
you required data at request frequency, if possible.

Using a monitor

© 2025 Robox SpA

12

BCC Communication Protocol v 3.10

In order to use a monitor you have to perform the following steps:
. Create the monitor

. Start the monitor

1
2
3. Receive the data until desired or operation expired
4. Stop the monitor

5

. Destroy the monitor

Each monitor is indentified by a couple of 32bit values, called owner ID and monitor ID. You
should assign a value to owner ID in order to distinguish you from other possible monitor
clients (use a pseudo random 32bit value): the monitor ID is assighed by the connected
device (don't make any assumption about the value of next monitor ID).

First of all create your monitor definition with bccMonCreate[+s9) command: if successfully, it
will give you the monitor ID. When you are ready to receive data from monitor, start it with
the bccMonStart[+ed) command, by indicating owner & monitor ID and required data
frequency (hz): if successfully, the device will respond with the effective data frequency
applied (not necessary what you required). If you don't agree with the data frequency, stop
now the monitor with bccMonStop[+es) command.

While receiving data, at applied frequency (or less if device is overloaded), you have to
periodically grant data transmission (command bccMonWd[199) by indicating granted time in
[ms]: the device will transmit data until this time is expired or a new grant replace the old
one. This means that the device will sent data only if feel that client is connected and
receive data, otherwise it will expire and stop the monitor automatically.

Caution:

e If you give a grant time (for example) of 5000ms, be sure to transmit the new grant
before that time (for example at 4500ms) otherwise you risk that the monitor expire
before new grant is acknowledged. If expired and yet valid, when you send a new
bccMonWd| 1961, the monitor is automatically restarted.

e If you create a monitor and lost it, when you create an other monitor and start it, if you
use bccMonWd[+e6) for all owner monitors, you will restart the lost monitor too. Then,
Before create the new monitor, destroy all monitor for that owner or check monitor status
with bccMonStatus[eh.

Incoming data from the monitor is carried by bccDatal 68 message: see bccMonStart[wd for
more information.

When you don't want more data from monitor, or you don't receive data for a time (you can
use the same grant time), you can stop the monitor with the bccMonStop[e3 command. If
monitor is no more needed, can be destroyed with the bccMonDestroy 191)_5 command.

Each command you send for the monitor (bccMonStart, bccMonStop, bccMonDestroy) always
need the owner and monitor ID: if these informations are not matched on the device, the
operation will be denied.

Using multiple monitor

In the case you need multiple monitor at one time (for example required data does not fit in
a single monitor), you can perform the following task (similar to single monitor usage):

1. Create all monitor definition and keep a list of all created monitor ID

2. Start separately each monitor (with monitor ID) or start all monitor of the owner (with
special monitor ID OxFFFFFFFF).

3. Receive the data for all monitors until desired or operation expired: grant periodically the
transmission separately for each monitor (with monitor ID) or grant all owner monitor
(with special monitor ID OxFFFFFFFF)

4. Stop separately each monitor (with monitor ID) or start all monitor of the owner (with
special monitor ID OXFFFFFFFF)

© 2025 Robox SpA

General 13

5. Destroy separately each monitor (with monitor ID) or start all monitor of the owner (with
special monitor ID OXFFFFFFFF).

Oscilloscope specifications

When you need to receive a small group of data (variables) at high and fixed frequency
from a connected device, the ideal solution is to program and play a real-time variable
oscilloscope. This will send you required data at request frequency, if possible.

HINT: oscilloscope is used to get data from a minimum frequency of 100HZ up to a
maximum of 1KHZ, where possible: for lower frequency, consider using a monitor[+1
instead.

Using an oscilloscope

In order to use an oscilloscope you have to perform the following steps:
1. Create the oscilloscope

2. Start the oscilloscope

3. Receive the data until desired or operation expired

4. Stop the oscilloscope

5. Destroy the oscilloscope

Each oscilloscope is identified by a couple of 32bit values, called owner ID and oscilloscope
ID. You should assign a value to owner ID in order to distinguish you from other possible
oscilloscope clients (use a pseudo random 32bit value): the oscilloscope ID is assigned by
the connected device (don't make any assumption about the value of next ID).

First of all create your oscilloscope definition with bccOscCreate[200 command: if successfully,
it will give you the oscilloscope ID. When you are ready to receive data from oscilloscope,
start it with the bccOscStart|2091 command, by indicating owner & oscilloscope ID and
required data frequency (HZ): if successfully, the device will respond with the effective data
frequency applied (not necessary what you required). If you don't agree with the data
frequency, stop now the oscilloscope with bccOscStop[z10l command.

While receiving data, at applied frequency (or less if device is overloaded), you have to
periodically grant data transmission (command bccOscWd[213) by indicating granted time in
[ms]: the device will transmit data until this time is expired or a new grant replace the old
one. This means that the device will sent data only if feel that client is connected and
receive data, otherwise it will expire and stop the oscilloscope automatically.

Caution:

e If you give a grant time (for example) of 5000ms, be sure to transmit the new grant
before that time (for example at 4500ms) otherwise you risk that the oscilloscope expire
before new grant is acknowledged. If expired and yet valid, when you send a new
bccOscWd|213), the oscilloscope is automatically restarted.

e If you create an oscilloscope and lost it, when you create an other oscilloscope (with
same owner) and start it, if you use bccOscWd[23) for all owner oscilloscope, you will
restart the lost oscilloscope too. Then, Before create the new oscilloscope destroy all
oscilloscope for that owner or check oscilloscope status with bccOscStatus[zh.

Incoming data from the oscilloscope is carried by bccDatal131 message: see bccOscStart[x)
for more informations.

When you don't want more data from oscilloscope, or you don't receive data for a time (you
can use the same grant time), you can stop the oscilloscope with the bccOscStop[21h)
command. If oscilloscope is no more needed, can be destroyed with the bccOscDestroy[208)
command.

© 2025 Robox SpA

14

BCC Communication Protocol v 3.10

Each command you send for the oscilloscope (bccOscStart, bccOscStop, becOscDestroy)
always need the owner and oscilloscope ID: if these informations are not matched on the
device, the operation will be denied.

Using multiple oscilloscopes

In the case you need multiple oscilloscope at one time (for example to use synchronized
oscilloscopes), you can perform the following task (similar to single oscilloscope usage):

1. Create all oscilloscope definition and keep a list of all created oscilloscope ID

2. Start separately each oscilloscope (with oscilloscope ID) or start all oscilloscope of the
owner (with special oscilloscope ID OxFFFFFFFF).

3. Receive the data for all oscilloscopes until desired or operation expired: grant
periodically the transmission separately for each oscilloscope (with oscilloscope ID) or
grant all owner oscilloscope (with special oscilloscope ID OxFFFFFFFF)

4. Stop separately each oscilloscope (with oscilloscope ID) or start all oscilloscope of the
owner (with special oscilloscope ID OxFFFFFFFF)

5. Destroy separately each oscilloscope (with oscilloscope ID) or start all oscilloscope of the
owner (with special oscilloscope ID OxFFFFFFFF).

Transfer specifications

The following transfer specifications are available in BCC/31 protocol:
- download transfer sequence[+"

- upload transfer sequence[s

- data save sequence[)

- data load sequence[s"

- data exchange sequence[

Download transfer sequence

When you need to download some information from the connected device to local, you can
use the download transfer sequence.

First send the request message, with optional request parameters (REQDATA).
On failure, a beccNack[eh is received.
On success, a beccAck[sl is received with following data (ACKDATA):

Offset Type Label Description

0 u32 COUNT No. of item that will be
received (or OXFFFFFFFF
for continue stream
termined only by
bccEndDatal 165
message).

Note: the SCH value of this bccAckl+6h will be de DCH for all subsequent commands/message
for this sequence.

Now, in order to receive item you have to periodically send bcclIBlock[166 message until end
of data or operation is aborted. The message has the following data (IBDATA):

© 2025 Robox SpA

General 15

Offset Type Label Description

0 us8 TX No. of consecutive
item that can be
received (e.g.
transmitted from the
connected device)

If there are no data, the sequence is closed by a bccNoData[+e8 message.

As authorized by the bcclBlock[6h total TX count, the connected device will transmit items
(data structure defined as ITEMDATA) with bccDatal 5 and bccEndDatal+e3) message. Notice
that tranporting data with bccEndDatal+3) is not mandatory: it could be used only as end of
sequence marker.

Any time the connected device abort the sequence, you will receive a bccAborted[+69)
message.

Notes:

e bccDatal 63 (or bccEndDatal+e3)) messages will begin with pid = 0 and will be incremented
by 1 at each message (255 + 1 will restart from O value) or can always send pid =0
meaning that no sequence check is required.

e bccEndDatal+e3) contain last item (with or without data) and after it the sequence is
completed.

e The sequence can be aborted at any time with sending bccAbort[+3 command to the
connected device.

e Data structure REQDATA, ACKDATA, IBDATA and ITEMDATA are defined in the request
message documentation, but always have the minimum structure declared here.

Upload transfer sequence

When you need to upload some information from local to the connected device, you can use
the upload transfer sequence.

First send the request message, with following parameters (REQDATA):
Offset Type Label Description

0 u3s2 COUNT No. of item that will be
transmitted (or
OxFFFFFFFF for
continuos stream
terminated only by
bccEndDatalea)
message).

On failure, a bccNack[+h is received.
On success, a bccAck[) is received with optional data (ACKDATA).

Notes:

e the SCH value of this bccAckl+4) will be de DCH for all subsequent commands/message for
this sequence.

Periodically the connected device will send bcclBlock[+681in order to authorize you to send a
number of consecutive items: the message has the following data (IBDATA):

© 2025 Robox SpA

16

BCC Communication Protocol v 3.10

Offset Type Label Description

0 us8 TX No. of consecutive
items that can be
transmitted (e.g.
received from
connected device)

If you have no data to send, send a bccNoDatal+edl and close the sequence.

As authorized by bcclBlock[+68) total TX count, send items (data structure defined as
ITEMDATA) with bccDatal 3 and becEndDatal+e5) message. Notice that transporting data with

bccEndDatal+ed) is not mandatory: it could be used only as end of sequence marker.

Any time the connected device abort the sequence, you will receive a bccAborted[+s)
message.

Notes:

e bccDatal 63 (or bccEndDatal+63)) messages will begin with pid = 0 and will be incremented
by 1 at each message (255 + 1 will restart from 0 value): if pid is always 0, it mean that
no sequence verification is required.

e bccEndDatal+es) contain last item (with or without data) and after it the sequence is
completed.

e The sequence can be aborted at any time by sending a bccAbort[+3 command to the
connected device.

e Data structure REQDATA, ACKDATA, IBDATA and ITEMDATA are defined in the request
message documentation, but always have the minimum structure declared here.

Data save sequence

When you need to save a block of binary data from the connected device to local, you can
use the data save sequence.

First send the request message, with the request parameters (REQDATA):
Offset Type Label Description

0 us BSIZE Required item size
(0=default), excluding
leading U32 offset

data.

1 U8[15] (riservati)

On failure, a beccNack[®d is received.

On success, a bccAck[6l is received with following data (ACKDATA):

Offset Type Label Description

0 u32 SIZE Size of data to be
saved [bytes]

4 U8[12] (riservati)

Notes:

o the SCH value of this bccAck[+h will be de DCH for all subsequent commands/message for
this sequence.

© 2025 Robox SpA

General 17

Now, in order to receive item you have to periodically send bcclIBlockl message until end
of data or operation is aborted. The message has the following data:

Offset Type Label Description

0 us8 TX No. of consecutive
item that can be
received (e.g.
transmitted from the
connected device)

15 U8[15] (riservati)

If there are no data, the sequence is closed by a bccNoData (8 message.

As authorized by the bcclBlock[e) total TX count, the connected device will transmit items
with bccDatal69 and becEndDatal 63 message. Notice that transporting data with
bccEndDatal+ed) is not mandatory: it could be used only as end of sequence marker. Items
have the following structure:

Offset Type Label Description

0 u32 OFFSET Item data offset

4 B[] DATA Item data (max 251
bytes)

Any time the connected device abort the sequence, you will receive a bccAborted[1es)
message.

After you receive bccEndDatal 65 (or bccNoDatal+e8) message you should send a
bccCompleted[16h message (if all things are right) to report that the file transfer has been
completed: if you need more time before sending this message, please periodically send a
bccWait[60 message to inform the connected device about the delay. The bccCompleted[+h

data are:

Offset Type Label Description

0 u32 SIZE Size of saved
data[bytes]

4 u32 COUNT No. of total binary

packet received

At any time the device can decide to abort the transfer. In this case you will receive the
notification via the bccAborted[d) message.

Notes:

e bccDatal) (or bccEndDatal6))) messages will begin with pid = 0 and will be incremented
by 1 at each message (255 + 1 will restart from 0 value) or can always send pid =0
meaning that no sequence check is required.

e bccEndDatal68) contain last item (with or without data) and after it the sequence is
completed.

e The sequence can be aborted at any time by sending a bccAbort[+5 command to the
connected device.

« Any time the connected device abort the sequence, you will receive a bccAborted[+6d)
message.

e Data structure REQDATA and ACKDATA are defined in the request message
documentation, but always have the minimum structure declared here.

© 2025 Robox SpA

18

BCC Communication Protocol v 3.10

» Some BCC/31 implementation have limit on the total delay time for bccWait[+s7) messages:
when the limit is reached, the operation will expire.

Data load sequence

When you need to load a block of binary data from local to the connected device, you can
use the data load sequence.

First send the request message, with at least the following data (REQDATA):
Offset Type Label Description

0 u32 SIZE Size of data to be
loaded [bytes]

4 u8[12] - (reserved)

On failure, a bccNackl3 is received.
On success, a bccAckl6d is received with at least the following data (ACKDATA):

Offset Type Label Description

0 us8 BSIZE Required item size
(0=default), excluding
leading U32 offset
data.

1 U8[15] - (reserved)

Note: the SCH value of this bccAckl+6 will be de DCH for all subsequent commands/message
for this sequence.

Periodically the connected device will send bcclBlock[+d1in order to authorize you to send a
number of consecutive items: the message has the following data:

Offset Type Label Description

0 us8 TX No. of consecutive
item that can be
transmitted (e.g.
received from the
connected device)

If you have no data to send, send a bccNoData[#8 and close the sequence.

As authorized by becIBlockl+eé) total TX count, send items with becDatals) and
bccEndDatal+68) message. Notice that transporting data with bccEndDatal+e is not
mandatory: it could be used only as end of sequence marker. Items have the following
structure:

Offset Type Label Description

0 u32 OFFSET Item data offset

4 B[] DATA Item data (max 251
bytes)

After you send the bccEndDatal+e9) (or bccNoDatal181) message you should wait the
bccCompleted[+h message that report what the device has received all data, with the
following format:

© 2025 Robox SpA

General 19

Offset Type Label Description

0 u32 SIZE Total size of loaded
data [bytes]

4 u32 COUNT No. of total binary
packet received

Notes:

e if this message is not received in an amount of time, you can consider the transfer
aborted (not confirmed). If the remote device need more time in order to complete the
operation, it can periodically send the bccWait[+6h message, until the operation completes.

e bccDatal 63 (or bccEndDatal+e3)) messages will begin with pid = 0 and will be incremented
by 1 at each message (255 + 1 will restart from 0 value): if pid is always 0, it mean that
no sequence verification is required.

e bccEndDatal+e3) contain last item (with or without data) and after it the sequence is
completed.

» The sequence can be aborted at any time by sending a bccAbort[+3) command to the
connected device, if you are not already in abort condition).

e Any time the connected device abort the sequence, you will receive a bccAborted[+ed)
message.

e Data structure REQDATA and ACKDATA are defined in the request message
documentation, but always have the minimum structure declared here.

e Some BCC/31 implementation have limit on the total delay time for bccWait[+6h messages:
when the limit is reached, the operation will expire.

Data exchange sequence

The data exchange sequence combine in a single operation the following activities:

e loading a block of datal 9 (QUERYDATA)

e waiting a block of data ready[2" (ANSWERDATA)

 saving a block of data[21" (ANSW ERDATA)

It is a sort of combination of a data load sequence followed by a data save sequence, but in
the same operation context.

Loading a block of data

This phase will send the data block (QUERYDATA) to the device.

First send the request message, with at least the following data (REQDATA):

Offset Type Label Description

0 u32 SIZE Size of data to be
loaded [bytes]

4 us8 BSIZE Required item size
(0O=default), excluding
leading U32 offset
data, that will be
used in phase 3.

5 U8[11] - (reserved)

© 2025 Robox SpA

20

BCC Communication Protocol v 3.10

On failure, a becNackl[+4) is received.
On success, a bccAcklsd) is received with at least the following data (ACKDATA):

Offset Type Label Description

0 us8 BSIZE Required item size
(0O=default), excluding
leading U32 offset
data.

1 U8[15] = (reserved)

Note: the SCH value of this bccAckl+2 will be de DCH for all subsequent commands/message
for this sequence, for all phases.

Periodically the connected device will send bcclBlock[+e81in order to authorize you to send a
number of consecutive items: the message has the following data:

Offset Type Label Description

0 us8 TX No. of consecutive
item that can be
transmitted (e.g.
received from the
connected device)

If you have no data to send, send a bccNoDatal+68l and close the sequence.

As authorized by bcclBlock[+68) total TX count, send items with bccDatal+68) and
bccEndDatal+e8) message. Notice that transporting data with bccEndDatal31is not
mandatory: it could be used only as end of sequence marker. Items have the following
structure:

Offset Type Label Description

0 u32 OFFSET Item data offset

4 B[] DATA Item data (max 251
bytes)

After you send the bccEndDatal+e) (or bccNoData[1381) message you should wait the
bccCompleted[+7 message that report what the device has received all data, with the
following format:

Offset Type Label Description

0 u32 SIZE Total size of loaded
data [bytes]

4 u32 COUNT No. of total binary
packet received

If the bccCompleted[+%h message is not received in an amount of time, you can consider the
transfer aborted (not confirmed).

If the remote device need more time in order to complete the operation, it can periodically
send the bccWait[16N message as needed..

When the bccCompleted[eR is received, the operation will go to phase 2.

Notes:

© 2025 Robox SpA

General 21

e bccDatal 63 (or bccEndDatal+e8)) messages will begin with pid = 0 and will be incremented
by 1 at each message (255 + 1 will restart from 0 value).

e bccEndDatal+e3) contain last item (with or without data) and after it the sequence is
completed.

» The sequence can be aborted at any time by sending a bccAbort[+e3 command to the
connected device, if you are not already in abort condition).

« Any time the connected device abort the sequence, you will receive a bccAborted[+e)
message.

e Data structure REQDATA and ACKDATA are defined in the request message
documentation, but always have the minimum structure declared here.

e Data structure QUERYDATA is fully defined in the request message documentation.

» Some BCC/31 implementation have limit on the total delay time for bccWait[+s7) messages:
when the limit is reached, the operation will expire.

Waiting a block of data
This phase will wait that the data block (ANSWERDATA) is ready from the device.

For an amount of time the sequence will wait for the bccReady[6h message, with the
following data (READYDATA):

Offset Type Label Description

0 u32 SIZE Size of data to be
saved [bytes]

4 U8[12] (riservati)

When the beccReadyl e is received, the operation will go to phase 3.

If the remote device need more time in order to prepare the answer data it can periodically
send the bccWait[h message as needed.

Notes:
e bccReady[eM will have pid = 0.

e The sequence can be aborted at any time by sending a bccAbort[+3) command to the
connected device, if you are not already in abort condition.

e Any time the connected device abort the sequence, you will receive a bccAborted[+ed)
message.

» Some BCC/31 implementation have limit on the total delay time for bccWait[+h messages:
when the limit is reached, the operation will expire.

e Data structure READYDATA is defined in the request message documentation, but always
have the minimum structure declared here.

e Data structure ANSWERDATA is fully defined in the request message documentation.

Saving a block of data
This phase will receive the data block (ANSWERDATA) from the device.

In order to receive data you have to periodically send bccIBlock[18l message until end of
data or operation is aborted. The message has the following data:

© 2025 Robox SpA

22

BCC Communication Protocol v 3.10

Offset Type Label Description

0 us8 TX No. of consecutive
item that can be
received (e.g.
transmitted from the
connected device)

15 U8[15] (riservati)

If there are no data, the sequence is closed by a bccNoData[66 message.

As authorized by the becIBlockl+e8) total TX count, the connected device will transmit items
with becDatal 168l and bccEndDatal 13 message. Notice that transporting data with
bccEndDatal+ed) is not mandatory: it could be used only as end of sequence marker. Items
have the following structure:

Offset Type Label Description

0 u32 OFFSET Item data offset

4 B[] DATA Item data (max 251
bytes)

Any time the connected device abort the sequence, you will receive a becAborted[+es)
message.

After you receive bccEndDatal 651 (or bccNoDatal+e6) message you should send a
bccCompleted[h message (if all things are right) to report that the file transfer has been
completed: if you need more time before sending this message, please periodically send a
bccWait[16h message to inform the connected device about the delay. The bccCompleted[wh
data are:

Offset Type Label Description

0 u32 SIZE Size of saved
data[bytes]

4 u32 COUNT No. of total binary

packet received

When the bccCompleted[+7 is sent, the operation is completed.

At any time the device can decide to abort the transfer. In this case you will receive the
notification via the bccAborted[+d) message.

Notes:

e bccDatal 63 (or bccEndDatal+e3)) messages will begin with pid = 0 and will be incremented
by 1 at each message (255 + 1 will restart from 0 value).

e bccEndDatal+68) contain last item (with or without data) and after it the sequence is
completed.

» The sequence can be aborted at any time by sending a bccAbort[+65 command to the
connected device.

« Any time the connected device abort the sequence, you will receive a bccAborted 16
message.

» Some BCC/31 implementation have limit on the total delay time for bccWait[+6i messages:
when the limit is reached, the operation will expire.

e Data structure ANSWERDATA is fully defined in the request message documentation.

© 2025 Robox SpA

General 23

Messages
Alarm handling

These messages are used getting and setting alarms to a connected device.

Alarm history: Miscellaneous:

e bccAlarmHInfols0h, query alarm history e bccGetAlarml 260, get alarm stack

o bccAlarmHList[24", get alarm history e bccSetAlarm[a, set user alarm

e bccAlarmHListE[26Y, get enhanced alarm e bccResetAlarmls™, reset alarm stack
history

e bccAlarmHCmd[23, command for alarm
history

Alarm stack:

e bccAlarmSInfo[s™, query alarm stack
information

e bccAlarmSGet[sM, query single alarm stack
entry

e bccAlarmSList[s™, query all alarm stack
entries

e bccAlarmSCmd| 24, command for alarm stack

Command for alarm history
Code: AS + 517

Symbolic: bccAlarmHCmd

This command will execute an alarm history specific command on the connected device.
Request has following parameters:

Offset Type Label Description

0 u32 FLAGS Command flags:

0x00000001 Clear
alarm history

0x00000002 Set new

history size

4 u32 SIZE New history size (no.
of message), if
enabled

On success, a bccAck[+6R is received with no data.

On failure, a becNack[eh is received. Specific errors:

NACK code Description Extra data

nacklllegalArgs Illegal parameter Ul6 What illegal:

1=Flags

© 2025 Robox SpA

24 BCC Communication Protocol v 3.10

NACK code Description Extra data
2=Size
nackReadOnly Alarm history is read-only and
cannot be modified.
Command for alarm stack
Code: AS + 522
Symbolic: bccAlarmSCmd

This command will execute an alarm stack specific command on the connected device.

Request has following parameters:

Offset Type Label

0 uie CMD

2 u32 ALIX

6 uie ALCODE
8 uie6 ALAXIS

On success, a becAck[h is received with no data.

On failure, a beccNack[d is received. Specific errors:

NACK code Description

nacklllegalArgs Illegal parameter

Get alarm history
Code: AS + 516

Description

Command code:
1=Clear all alarms

2=Clear stack position
(ALIX)

3=Clear specific alarm
(ALCODE, ALAXIS)

Alarm index
Alarm code
(0=all)

Alarm axis ID
(0=all)

Extra data

U16 What illegal:
1=Command
2=Alarm index
3=Alarm code

4=Alarm axis ID

© 2025 Robox SpA

Messages 25

Symbolic bccAlarmHList

This command will get complete (or partial) alarm history from the remote device.: this is a
standard download transfer sequence[".

REQDATA structure is the following:

Offset Type Label Description

0 u32 FROMID First alarm history ID
required

4 u32 TOID Last alarm history ID
required

ITEMDATA structure is the following:

Offset Type Label Description

0 u32 ID Alarm history ID

4 us8 HH Time (hour) of the
item

5 us MM Time (minute) of the
item

6 us8 SS Time (second) of the
item

7 us DD Date (day) of the item

8 us MO Data (month) of the
item

9 us8 YY Data (year - 2000) of
the item

10 u32 CODE Alarm code

14 u32 - Reserved

18 u32 = Reserved

22 u32 - Reserved

26 STRZ TEXT Alarm text desctiption
(optional)

In case of RTE firmware (see bccSysInfol7sh, FIRMWTYPE=8), the CODE field contains the
following data:

Offset Type Label Description

0 ule ALCODE RTE alarm code
(0O=none)

2 ule6 ALAXIS RTE alarm axis ID
(0O=none)

As general, you can get items with the following order:

© 2025 Robox SpA

26

BCC Communication Protocol v 3.10

e from OLDID to NEWID for native order.
e from NEWID to OLDID for reversed order.

When using RTE version 33.16.x (or lower), you should consider two different cases:

1. NEWID is greater/equal than OLDID.
2. NEWID is less than OLDID.

In case 1, you can get items with a single request, as:

e from OLDID to NEWID for native order.
e from NEWID to OLDID for reversed order.

In case 2, you must get items with two different request, as:

e from OLDID to OXFFFFFFFF and from O to NEWID for native order.
e form NEWID to 0 and from OxFFFFFFFF to OLDID for reversed order.

Get alarm stack
Code:

Symbolic:

AS + 500

bccGetAlarm

This command will get the complete alarm stack (8 alarm codes). Request has no

parameters.

On success, a bccAck[6h is received with following data:

Offset
0

2

4

6

8

10

12

14

On failure, a bccNack[+R is received.

Type

uleé
ule
ule
ule
ule
uleé
ule
ule

Label

ALARMO
ALARM1
ALARM2
ALARM3
ALARM4
ALARM5
ALARM6

ALARM7

Description

Alarm code 0
Alarm code 1
Alarm code 2
Alarm code 3
Alarm code 4
Alarm code 5
Alarm code 6

Alarm code 7

For more informations about alarm, see your hardware documentation.

NOTE: this command is not supported by RTE (see bccAlarmSList[3h).

Get enhanced alarm history

Code:

Symbolic:

AS + 524

bccAlarmHListE

© 2025 Robox SpA

Messages 27

This command will get complete (or partial) enhanced alarm history from the remote device:

this is a standard download transfer sequence[".
REQDATA structure is the following:

Offset Type Label

0 u32 FLAGS
4 u32 FROMID
8 u32 TOID

Description

Query flags:

0x00000001 Query
for extra parameters
(ALPx)(#1)

0x00000002 Query
for original alarm text

0x00000004 Disable
query for alarm text

0x00000008 Query
using extended alarm
format

0x00000010 Query
source text parameter
index (#2)

0x00000020 Query
source text in neutral
language (#3)

0x00000040 Disable
common prefixes for
alarm text

First alarm history ID
required

Last alarm history ID
required

(#1) When the extended format is required, parameters are always queried.

(#2) Query of the source text parameter index is available only with the extended format and

apply both to system and user text parameters.

(#3) Query source text in neutral language is available only if query for original alarm text (0x2)

is active.
ACKDATA structure is the following:

Offset Type Label
0 u32 COUNT
4 u32 HSIZE
8 u32 HID

If initial request fails, bccNack[+d) is received. Specific errors

Description

Transfer items count
(see download transfer

sequence[a")

History size (no. of
storable alarms)

History content ID

© 2025 Robox SpA

28

BCC Communication Protocol v 3.10

NACK code Description Extra data
nacklllegalArgs Illegal parameters U1l6 What illegal:
1=Flags

ITEMDATA structure is the following (in case of normal alarm format):

Offset Type Label Description

0 u32 ID Alarm history ID

4 us HH Time (hour) of the
item

5 us8 MM Time (minute) of the
item

6 us SS Time (second) of the
item

7 us DD Date (day) of the item

8 us8 MO Data (month) of the
item

9 us8 YY Data (year - 2000) of
the item

10 uie ALCODE Alarm code
(0O=none)

12 ulé6 ALAXIS Alarm axis ID
(0=none)

14 Us[2] - (reserved)

DBL ALP1 Alarm extra

parameter 1 (#1)

DBL ALP2 Alarm extra
parameter 2 (#1)

DBL ALP3 Alarm extra
parameter 3 (#1)

STRZ TEXT Alarm text (#2)
(#1) Fields present only if FLAGS parameter contains 0x00000001 value.

(#2) Fields present only if FLAGS parameter does not contains 0x00000004 value.

ITEMDATA structure is the following (in case of extended alarm format):

Offset Type Label Description

0 u32 ID Alarm history ID

4 us HH Time (hour) of the
item

© 2025 Robox SpA

Messages 29

Offset

5

10

12

14

15

where every ITEMx structure is the following:

Offset

+0

Type
us8

us

us
us

us

uleé

ule

us

Type
us8

Label

MM

SS

DD

MO

YY

ALCODE

ALAXIS

NITEMS
ITEMO
ITEM1

ITEMn

Label

TYPE

Description

Time (minute) of the
item

Time (second) of the
item
Date (day) of the item

Data (month) of the
item

Data (year - 2000) of
the item

Alarm code

(0=none)

Alarm axis ID

(0=none)

N. of alarm items
Alarm item O
Alarm item 1

Alarm item N

Description

Item type:

1 = Signed 8bit value
(I8)

2 = Unsigned 8bit
value (U8)

3 = Signed 16bit
value (I16)

4 = Unsigned 16bit
value (U16)

5 = Signed 32bit
value (I32)

6 = Unsigned 32bit
value (U32)

7 = Signed 64bit
value (I64)

8 = Unsigned 64bit
value (U64)

9 = Float value (FLT)

10 = Double value
(DBL)

© 2025 Robox SpA

30

BCC Communication Protocol v 3.10

Offset Type Label Description

11 = String value
(STRZ)

12 = Alarm text
(STRZ)

13 = System source
text parameter (I132)

14 = User source text
parameter index (I32)

+1 DATA Item data (content
and length according
type)

As general, you can get items with the following order:

e from OLDID to NEWID for native order.

e from NEWID to OLDID for reversed order.

When using RTE version 33.16.x (or lower), you should consider two different cases:

1. NEWID is greater/equal than OLDID.

2. NEWID is less than OLDID.

In case 1, you can get items with a single request, as:

e from OLDID to NEWID for native order.

o from NEWID to OLDID for reversed order.

In case 2, you must get items with two different request, as:

e from OLDID to OxFFFFFFFF and from O to NEWID for native order.

e form NEWID to 0 and from OxFFFFFFFF to OLDID for reversed order.

Query alarm history
Code: AS + 515

Symbolic: bccAlarmHInfo

This command will query information about alarm history on the remote device. Request has
no parameters.

On success, a bccAck[6l is received with following data:

Offset Type Label Description

0 u32 OLDID Oldest alarm history
ID

4 u32 NEWID Newst alarm history
ID

8 u32 HCNT No. of alarm history

between OLDID and
NEWID (all included)

© 2025 Robox SpA

Messages 31

Offset Type Label Description

12 u32 HSIZE History size (no. of
storable alarms)

16 u32 HID History content ID

On failure, a bccNack[+dl is received.
Alarm history report handling is based on the following statements:

e Item ID are allocated progressively, with an exception: at value OxFFFFFFFF, next valid ID
will be 0.

e The no. of items from OLDID and NEWID will be calculated as: if NEWID great or equal
than OLDID maximum no. is (NEWID - OLDID + 1), otherwise is ((OXFFFFFFFF - OLDID + 1)
+ NEWID + 1).

Query alarm stack information
Code: AS + 519

Symbolic: bccAlarmSInfo

This command will query information about alarm stack from the connected device. Request
has no parameters.

On success, a bccAck[6l is received with following data:

Offset Type Label Description

0 u32 ASCAP Alarm stack capacity
(n. of alarms)

4 u32 ASCNT Alarm count in stack

8 u32 CID ,IAIIDarm stack content

On failure, a bccNack[+h is received.

Query all alarm stack entries
Code: AS + 521

Symbolic: bccAlarmSList

This command will query the complete alarm stack from the connected device: this is a
standard download transfer sequence[".

REQDATA structure is the following:

Offset Type Label Description
0 u32 FLAGS Query flags:

© 2025 Robox SpA

32

BCC Communication Protocol v 3.10

Offset Type Label Description

0x00000001 Query
for extra parameters
(ALPx)(#2)

0x00000002 Query
for original alarm text
only

0x00000004 Disable
query for alarm text

0x00000008 Enable
LCID/CID verification

0x00000010 Query
using extended alarm
format

0x00000020 Query
source text parameter
index (#3)

0x00000040 Query
source text in neutral
language (#4)

0x00000080 Disable
common prefixes for
alarm text

4 u32 LCID Local alarm stack
content ID (#1)

(#1) Information required only when LCID/CID verification is enabled.
(#2) When the extended format is required, parameters are always queried.

(#3) Query of the source text parameter index is available only with the extended format and
apply both to system and user text parameters.

(#4) Query source text in neutral language is available only if query for original alarm text (0x2)
is active.

ACKDATA structure is the following:
Offset Type Label Description

0 u32 COUNT Transfer items count
(see download transfer

sequence[")

4 u32 ASCAP Alarm stack capacity (n.
of alarms)
8 u32 CID Alarm stack content ID

If initial request fails, bccNack[+ed) is received. Specific errors

NACK code Description Extra data
nacklllegalArgs Illegal parameters U16 What illegal:
1=Flags

© 2025 Robox SpA

Messages 33

NACK code

nackSameData

Description Extra data

The CID value is the same as
LCID, so the query is not
needed (only when
verification is required).

ITEMDATA structure is the following (in case of nhormal alarm format):

Offset
0

4

16

24

32

40

Type
u32

ule

ule

DBL

DBL

DBL

U8[8]
STRZ

Label Description
ALIX Alarm index (1-ASCAP)
ALCODE Alarm code
(0=none)
ALAXIS Alarm axis ID
(0O=none)
ALP1 Alarm extra
parameter 1
ALP2 Alarm extra
parameter 2
ALP3 Alarm extra
parameter 3
- Reserved
TEXT Alarm text

ITEMDATA structure is the following (in case of extended alarm format):

Offset
0

4

Type
u32
ule6

ule

us

where every ITEMx structure is the following:

Offset

+0

Type
us8

Label Description
ALIX Alarm index (1-ASCAP)
ALCODE Alarm code
(0=none)
ALAXIS Alarm axis ID
(0O=none)
NITEMS N. of alarm items
ITEMO Alarm item O
ITEM1 Alarm item 1
ITEMn Alarm item N
Label Description
TYPE Item type:

© 2025 Robox SpA

34

BCC Communication Protocol v 3.10

Offset Type Label Description

1 = Signed 8bit value
(I8)

2 = Unsigned 8bit
value (U8)

3 = Signed 16bit
value (I16)

4 = Unsigned 16bit
value (U16)

5 = Signed 32bit
value (I32)

6 = Unsigned 32bit
value (U32)

7 = Signed 64bit
value (164)

8 = Unsigned 64bit
value (U64)

9 = Float value (FLT)

10 = Double value
(DBL)

11 = String value
(STRZ)

12 = Alarm text
(STRZ)

13 = System source
text parameter (I32)

14 = User source text
parameter index (I132)

+1 DATA Item data (content
and length according

type)

Query single alarm stack entry
Code: AS + 520

Symbolic: bccAlarmSGet
This command will query a single alarm stack entry from the connected device. Request has
the following parameters:

Offset Type Label Description

0 u32 FLAGS Query flags:

0x00000001 Query for
extra parameters
(ALPx)(#1)

© 2025 Robox SpA

Messages 35

Offset Type Label Description

0x00000002 Query for
original alarm text only

0x00000004 Disable
query for alarm text

0x00000008 Query
using extended alarm
format

0x00000010 Query
source text parameter
index (#2)

0x00000020 Query
source text in neutral
language (#3)

0x00000040 Disable
common prefixes for
alarm text

4 u32 ALIX Alarm index (1-ASCAP,
see bccAlarmSInfo[s1M)

(#1) When the extended format is required, parameters are always queried.

(#2) Query of the source text parameter index is available only with the extended format and
apply both to system and user text parameters.

(#3) Query source text in neutral language is available only if query for original alarm text (0x2)
is active.

On success, a bccAck[sd) is received with following data (in case of normal alarm format):

Offset Type Label Description
0 u32 ALIX Alarm index (1-ASCAP)
4 u32 CODE Alarm code
8 DBL ALP1 Alarm extra
parameter 1
16 DBL ALP2 Alarm extra
parameter 2
24 DBL ALP3 Alarm extra
parameter 3
32 U8[8] - Reserved
40 STRZ TEXT Alarm text

or with the following structure (in case of extended alarm format):

Offset Type Label Description
0 u32 ALIX Alarm index (1-ASCAP)
4 u32 CODE Alarm code

© 2025 Robox SpA

36

BCC Communication Protocol v 3.10

Offset Type Label

8 us NITEMS

9 . ITEMO
ITEM1
ITEMn

where every ITEMx structure is the following:

Offset Type Label
+0 us TYPE
+1 DATA

Description
(0=none)

N. of alarm items
Alarm item 0
Alarm item 1

Alarm item N

Description

Item type:

1 = Signed 8bit value
(I8)

2 = Unsigned 8bit
value (U8)

3 = Signed 16bit
value (I16)

4 = Unsighed 16bit
value (U16)

5 = Signed 32bit
value (I32)

6 = Unsigned 32bit
value (U32)

7 = Signed 64bit
value (I64)

8 = Unsigned 64bit
value (U64)

9 = Float value (FLT)

10 = Double value
(DBL)

11 = String value
(STRZ)

12 = Alarm text
(STRZ)

13 = System source
text parameter index
(I32)

14 = User source text
parameter index (I32)

Item data (content
and length according

type)

In case of RTE firmware (see bccSysInfo[7s", FIRMWTYPE=8), the CODE field contains the

following data:

© 2025 Robox SpA

Messages 37

Offset Type Label Description

0 ule ALCODE RTE alarm code
(0=none)

2 ule ALAXIS RTE alarm axis ID
(0O=none)

On failure, a bccNackl 31 is received.

Reset alarm stack
Code: AS + 502

Symbolic: bccResetAlarm

This command will try to reset alarms on the device.

On success, a bccAck[6l is received: it doest not means that alarms have been really reset,
but to be sure you will have to check again with bccGetAlarm[26" command.

On failure, a bccNackl+3 is received.

NOTE: this command is not supported by RTE (see bccAlarmSCmd/[247).

Set user alarm
Code: AS + 501

Symbolic: bccSetAlarm

This command will set the user alarm on the device, given a code. Request parameters are
the following:

Offset Type Label Description

0 uie6 ALARM User alarm code

(see your hardware
documentation for
valid values)

On success, a bccAck[sl is received with no data.

On failure, a bccNack[R is received. Specific errors:

NACK code Description Extra data

nacklIllegalArgs Illegal alarm code

WARNING: on some device, setting certain alarm code, can cause "missing power"
condition.

|NOTE: this command is not supported by RTE.

© 2025 Robox SpA

BCC Communication Protocol v 3.10

Date/Time handling
These messages are used getting and setting date and time to a connected device.
e bccGetDateTimel[ss", get current date and time

e bccSetDateTimel 38, set current date and time

Get current date and time

Code: AS + 503

Symbolic: bccGetDateTime

This command will get current device date and time. Request has no parameters.

On success, a bccAck[6l is received with following data:

Offset Type Label Description

0 us HOUR Hour (0-23)

1 us MIN Minutes (0-59)

2 us8 SEC Seconds (0-59)

3 us DAY Current day (1-31)

4 us MONTH Current month (1-12)
5 ulé6 YEAR Current 4 digit year

On failure, a bccNack[+2 is received.

Set current date and time
Code: AS + 504

Symbolic: bccSetDateTime

This command will set current device date and time. Request parameters are the following:

Offset Type Label Description

0 us HOUR Hour (0-23)

1 us MIN Minutes (0-59)

2 us8 SEC Seconds (0-59)

3 us8 DAY Current day (1-31)

4 us8 MONTH Current month (1-12)
5 ulé6 YEAR Current 4 digit year
7 us FLAGS Settable field bits:

© 2025 Robox SpA

Messages 39

Offset Type Label Description
0x01 = HOUR field
settable

0x02 = MIN field
settable

0x04 = SEC field
settable

0x08 = DAY field
settable

0x10 = MONTH field
settable

0x20 = YEAR field
settable
Notes:

e Remember to set FLAGS for fields you want to set, otherwise they will not set. At least
one bit must be set in FLAGS, otherwise the command will fail.

On success, a bccAck[sl is received with no data.

On failure, a bccNack[+R is received. Specific errors:

NACK code Description Extra data

nacklIllegalArgs Illegal parameters Ul6 What illegal
1=Flags
2=Date/time

Debug and process handling
These messages are used to handle debug and process activities for a connected device.
General: Process specific:

e bccDebugStart[70), Start a debug session e bccProcesslList[sh, List available remote

« bccDebugStop[71%, Stop a debug session process

bccProcessinfoles™, Que oce
o becDebugWd[#@, Debug session watch-dog o ——— ®, Query process

information
e bccProcessFlashiInfole", Query process
Breakpoint specific: flash information
e bccBreakpAdd[sd, Add a breakpoint e bccProcessCmdl s, Execute a process

. . command
e bccBreakpDell 4, Delete multiple breakpoint

_ . . _ e bccProcessDbgCmd[s1Y, Execute a process
« becBreakplistlss), List defined breakpoints depbug command

e bccBreak Infom, Ask information for a ° bccProcessGetDebugContextlgﬁ, Query

breakpoint debug context for a process
e bccBreakpStatus[ed), Ask status for a e bccProcessGetTraceled), Ask trace
breakpoint information for a process
e bccProcessStatus[er), Ask R/T status for a
process

© 2025 Robox SpA

40

BCC Communication Protocol v 3.10

Object block specific:
e bccObjBlockList[ss), List object blocks

Add a breakpoint
Code:

Symbolic:

e bccProcessinspect[sY, Inspect contents for
a process

Operating system specific:

e bccOsAttachedFList[s7h, List of OS attached
function

AS + 720

bccBreakpAdd

This command will request to add a breakpoint, with the following parameters:

Offset Type
0 u32
4 us
5 uie6
7 us

Label Description
DSID Debug session ID
MODE Breakpoint modality:
O=Inactive
1=Active
2=Active only for MCNT
times
3=Skip MCNT times before
active
MCNT Parameter for MODE field
WHAT What to set as
breakpoint:
1=Physical address.
WDATA is:
Offse Type Label Descr
t iption
+0 U32 ADDR Phisic
al
addre
ss

+4 Ulé TYPE Data
type
(use
VAR
type
code)

2=Process and step
number. WDATA is:

© 2025 Robox SpA

Messages 4

Offset

18

19

20

28

32

Type

us

us

us

B8

u32

u32

Label

WDATA[10]

TYPE

COND

CDATA[8]

CMASK

FLAGS

Description

Offse Type Label Descr
t iption

+0 Uié PID Proce
ss ID

+2 U32 STEP Step
numb
er

3=Variable. WDATA is a
standard VAR[o structure
(#1)

Data for what field, format
according WHAT value.

Breakpoint type:
1=Execution (fetch)
2=Write
3=Read/Write

Breakpoint condition (for
TYPE 2 and 3) refer to
CDATA field:

0=No condition

1=Equal

2=Different

3=Less than

4=Less or equal than
5=Greater than
6=Greater or equal than

7=Mask equal (use CMASK
field)

8=Mask not equal (use
CMASK field)

Breakpoint condition data:
format is depending on
WHAT field (and VAR base
type for WHAT=3).

Breakpoint condition
mask, for COND 7 and 8.
Breakpoint flags:

0x00000001 Stop process
(when BP reached)

0x00000002 Stop trace
(when BP reached)

© 2025 Robox SpA

42

BCC Communication Protocol v 3.10

Offset Type Label Description

0x00000004 Save storage
(when BP reached)

36 STRZ INFO Optional ascii information
(for WHAT=3 variable
name)

(#1) String type variables are not supported in this operation.

On success, a becAck[6R is received with the following data:

Offset Type Label Description

0 u32 BPID Breakpoint unique ID

On failure, a beccNackldl is received. Specific errors:
NACK code Description Extra data

nackOutOfResource Unable to set more
breakpoints

nacklllegalArgs Illegal arguments U1l6 What illegal:
1=Address
2=Process ID
3=Step (in process)
4=Variable
5=Mode
6=What
7=Cond
8=Flags
9=Type
10=Adress already has a BP

nacklllegalDebug Illegal debug session

Data format for process contents inspection

Contents data of a process is organized as a structured sequence of tags with any
associated data.

Offset Type Name Description
0 us TAG_ID Tag code
1 usl...] TAG_DATA Tag data (optional)

Currently the tag codes provided are as follows:

© 2025 Robox SpA

Messages 43

Name Value Description

tag invalid 0 Invalid tag (reserved)

tag_i8 1 8 bit signed data (i8)

tag i16 2 16 bit signed data (i16)

tag i32 3 32 bit sighed data (i32)

tag i64 4 64 bit signed data (i64)

tag_u8 5 8 bit unsigned data (u8)

tag ul6 6 16 bit unsigned data (ul6)

tag u32 7 32 bit unsigned data (u32)

tag u64 8 64 bit unsigned data (u64)

tag_float 9 32 bit floating point data
(float)

tag real 10 64-bit floating point data
(double)

tag_bool_false 11 Boolean false value (has no
data)

tag_bool_true 12 Boolean true value (has no
data)

tag null 13 Null value (has no data)

tag_string 14 String value

tag_enum_i32 15 Enumeration type value (i32)

tag enum_u32 16 Enumeration type value (u32)

tag_begin_uniform_array 17 Start a block for uniform array
type

tag_begin_heterogeneous_arr 18 Start a block for

ay heterogeneous array type

tag lazy _range 19 Skip a range of values within
a heterogeneous array
(expected but not supported
at current version)

tag lazy id 20 Skip a single value either
within a heterogeneous
array, or within a
tag begin_static or
tag begin_instance block

tag_begin_static 21 Start a block description for
static fields of a type

tag_begin_instance 22 Start a block description for

instance fields of a type

© 2025 Robox SpA

44

BCC Communication Protocol v 3.10

Name

tag_begin_data

tag_missing

tag_end

tag_begin_expr_data

tag_begin_expr_value

tag _base_instance

Value

23

24

25
26

27

28

Description

Start a block root that will
contain all data

Indicates that the expected
field is not available (e.g.,
due to optimizations), has no
data

End of block (has no data)

Start a block for additional
(optional) data for an
expression

Start a block of data for a
specific value for an
expression part (within a
tag begin_expr_data)

Start a block for instance
fields of a basic type (within
an instance block)

Received data always have tag begin_data as the start tag and tag end as the end tag.

More complex tags will be described below (DATA_FMT=0x101).

tag_string

The tag payload is composed as follows:

Offset

0

tag_enum_i32

The tag payload is composed as follows:

Offset
0

tag_enum_u32

The tag payload is composed as follows:

Type

u32

US[SIZE]

Type
u32

132

Name

SIZE

VALUE

Name

TYPE_ID

VALUE

Description

Length of the string
(including final \0).

Representation of the
string as a UTF-8
sequence, with final
\0.

Description

Data type ID of the
enumeration

Value of the
enumeration

© 2025 Robox SpA

Messages 45

Offset Type Name
0 u32 TYPE_ID
4 u32 VALUE

tag_begin_uniform_array

The tag payload is composed as follows:

Offset Type Name

0 us NSIZE

1 U32[NSIZE] SIZES
u32 TYPE_ID

Notes:

Description

Data type ID of the
enumeration

Value of the
enumeration

Description

Number of array
dimensions [1, 3]

Length of the
individual dimensions
of the array

Scalar type ID of data
described

e In the case of simple types (i8, i16, i32, i64, u8, ul6, u32, ub4, double, float, bool), the
block following the tag directly contains the data without any associated tag, the size of
each individual elementis (1, 2, 4, 8,1, 2, 4, 8, 4, 1) bytes, respectively.

e As an optimization, in case the content is of tag begin_instance elements, the type field of

the tag begin_instance is omitted.

e The data block is closed by tag_end.

tag_begin_heterogeneous_array

The tag payload is composed as follows:

Offset Type Name
0 us NSIZE
1 U32[NSIZE] SIZES
Notes:

e Each individual array element is preceded by a tag.

e The data block is closed by tag_end.

tag_lazy_range

The tag payload is composed as follows:
Offset Type Name
0 u32 COUNT

Description

Number of array
dimensions [1, 3]

Length of the

individual dimensions
of the array

Description

Number of elements
skipped, i.e., not

© 2025 Robox SpA

46 BCC Communication Protocol v 3.10

Offset Type Name Description
expanded

tag_lazy_id

The tag payload is composed as follows:

Offset Type Name Description

0 u32 TYPE_ID Data type ID given of
the skipped value,
i.e., not expanded

tag_begin_static

The tag payload is composed as follows:

Offset Type Name Description

0 u32 type_id Data type ID that is
described

Note:

e The data block is closed by tag end.

tag_begin_instance

The tag payload is composed as follows:

Offset Type Name Description

0 u32 TYPE_ID Data type ID being
described

Note:

e In case you are describing a class type, the elements of the base class will be inserted
immediately after the elements present directly in the class indicated by the type (and so

on transitively) and will be preceded by the tag tag base type.

e The data block is closed by tag_end.

tag_base_type
The tag payload is composed as follows:

Offset Type
0 u32

tag_begin_expr_value

The tag payload is composed as follows:

Name

TYPE_ID

Description

Basic data type ID
that is described

© 2025 Robox SpA

Messages 47

Offset Type Name Description

0 u32 BEGIN_POS Initial position (in the
expression) of the
partial value
description

4 u32 END_POS End position (in the
expression) of the
partial value
description

Data format for process debug context

Debug context data of a process is organized as a structured sequence of tags with any
associated data.

Offset Type Name Description
0 us TAG_ID Tag code
1 Us8I...] TAG_DATA Tag data (optional)

Currently the tag codes provided are as follows:

Name Value Description

tag invalid 0 Invalid tag (reserved)

tag_end 1 End block (has no data)

tag_begin_data 2 Start main data block

tag_begin_debug_files 3 Debug file block start

tag_debug_file 4 Single debug file

tag begin_external_type ids 5 Start block ID external data
types

tag_external_type_id 6 Single external data type ID

Received data always have tag begin_data as the start tag and tag end as the end tag.
More complex tags (DATA_FMT=0x100) will be described below.

tag_debug_file

The tag payload is composed as follows:

Offset Type Name Description

0 us FILETYPE File type:
0 =invalid
1 = EELF/R4D file
2 = R4D file

© 2025 Robox SpA

48

BCC Communication Protocol v 3.10

Offset Type Name Description

1 us = =

2 ul6 FILEPATH_L Length of the file path
(including \0)

4 US[FILEPATH_L] FILE_PATH Full path file name (in

u32

u32

u32

u32

u32

u32

u32

u32

RELOC_FLAGS (#2)

RELOC_PATH_ID_OFF

RELOC_MODULE_ID_
OFF
RELOC_FILE_ID_OFF
RELOC_CONTEXT_ID_
OFF

RELOC_STEP_ID_OFF

RELOC_TYPE_ID_OFF

RELOC_SHARED_MOD
ULE_ID_OFF

flash) that contains
debugging
information

Relocation settings:

0x1 Enable path_id
relocation

0x2 Enable relocation
module_id

0x4 Enable relocation
file_id

0x8 Enable relocation
context_id

0x10 Enable
relocation step_id

0x20 Enable
relocation type_id

0x40 Enable
relocation
shared_module_id

Offset relocation
path_id (#1)

Offset relocation
module_id (#1)

Offset relocation
file_id (#1)

Offset relocation
context_id (#1)

Offset relocation
step_id (#1)

Offset relocation
type_id (#1)

Offset relocation
shared_module_id
(#1)

(#1) In case of value 0, and corresponding enable in reloc_flags, the ids in that category are
gueued to the corresponding ones in the previous debug file; if the category in reloc_flags is not
enabled, the ids remain unchanged.

(#2) The default of the current implementation is always value 0x7f (all enable flags).

© 2025 Robox SpA

Messages 49

tag_external_type_.id

The tag payload is composed as follows:

Offset Type Name Description

0 u1e - -

2 ul6 FULLNAME_L Full name length

4 U8[FULLNAME_L] FULLNAME Qualified full name,

various names are in
reverse order

u32 TYPE_ID Value type ID

Debug session watch-dog
Code: AS + 712

Symbolic: bccDebugWd

This command will refresh debug session watchdog for specified ID. Request parameters
are the following:

Offset Type Label Description
0 u32 DSID Debug session ID
4 u32 TIMEWD Watchdog time [ms]

On success, a becAck[63 is received with no data.

On failure, a beccNack[ed is received. Specific errors:

NACK code Description Extra data

nackNotFound Required debug session (by
ID) not found or expired

nacklllegalArgs Illegal arguments U16 What illegal:
2=Watchdog time [ms]

Delete a breakpoint
Code: AS + 721

Symbolic: bccBreakpDel

This command will request to delete an existing breakpoint, with the following parameters:
Offset Type Label Description

0 u32 DSID Debug session ID

© 2025 Robox SpA

50 BCC Communication Protocol v 3.10

Offset Type Label Description

4 us NLIST No. of break point
(OxFF=All breakpoint
for session)

5 u32 LIST[] List of breakpoint ID
to delete

On success, a bccAck[el is received with the no data.

On failure, a bccNack[R is received. Specific errors:

NACK code Description Extra data
nackNotFound Breakpoint not found U16 Breakpoint index
nacklllegalDebug Illegal debug session

Execute a process command
Code: AS + 705

Symbolic: bccProcessCmd

This command will request to execute a specific remote process command, with the
following parameters:

Offset Type Label Description

0 u32 DSID Debug session ID
(0=Use read-only
session if available)

4 u32 FLAGS Operating flags:

0x00000001 Search
process by filename
(ignore PID)

8 uilé PID Process ID

10 ule CMDID Command ID:
1=Load
2=Start
3=Stop
4=Reload
5=Reload and restart

6=Reload and
synchronized restart

12 us[1i6] - Reserved

28 STRZ FILENAME Process filename

On success, a becAck[®h is received with no data.

© 2025 Robox SpA

Messages 51

On failure, a beccNackledl is received. Specific errors:

NACK code Description Extra data

nackNotFound Process not found

nackFileNotExist Process filename not found

nacklllegalArgs Illegal parameters U16 What illegal:
1 =Flags

2 = Command ID

3 = Filename

nacklllegalDebug Illegal debug session
nackRequestError Error executing the command U16 NACK Error code
(request)

Execute a process debug command
Code: AS + 702

Symbolic: bccProcessDbgCmd

This command will request to execute a specific remote process debug command, with the
following parameters:

Offset Type Label Description

0 u32 DSID Debug session ID
4 u32 FLAGS Operating flags:
8 ule PID Process ID

10 ul6 CMDID Command ID:
1=Start
2=Stop
3=Continue
4=Step in
5=Step over

6=Run to (STEP
required)

7=Execute until out

8=Enable trace (opt,
enable up to STEP)

9=Disable trace

10=Kill (stop and
unschedule it)

12 u32 STEP ID step

© 2025 Robox SpA

52

BCC Communication Protocol v 3.10

On success, a becAck[16dl is received with no data.

On failure, a beccNack[d is received. Specific errors:

NACK code
nackNotFound

nacklllegalArgs

nacklllegalDebug

nackRequestError

Description
Process not found

Illegal parameters

Illegal debug session

Extra data

U1l6 Whatillegal :
1 = STEP value

2 = Command

3 = Not applicable
4 = Flags

Error executing the command U16 NACK Error code

(request)

Inspect contents of a process

Code:

Symbolic:

AS + 707

bccProcessInspect

This command will inspect contents of a remote user process: this is a standard data
exchange seguencel19.

The REQDATA structure is the following:

Offset
0

4

16

20
24

26

Type

u32
us[12]
u32

u32
ule
ule

Label

QSIZE

DSID

FLAGS

PID

QTYPE

On failure, a beccNack[d is received. Specific errors:

NACK code
nackNotFound
nacklllegalDebug

nacklllegalArgs

Description

Process not found

Illegal debug session

lllegal parameters

Description

Query data size
(reserved)

Debug session ID
(0=Use read-only
session, if available)
Operating flags

Process ID

Query type:

1 = Inspect R++
expression

Extra data

Ul6 What illegal:

© 2025 Robox SpA

Messages 53

NACK code Description

Specific data for type 1 (inspect R++ expression)

The QUERYDATA structure is the following:

Offset Type
0 u32
4 uie
6 uie6
8 uie
STRZ
STRZ

Label

FLAGS

DATA_FMT

CTX_OFF

EXPR_OFF
CTX

EXPR

(#1) Offset is related to the QUERYDATA buffer itself.

The ANSWERDATA structure is the following

Offset Type
0 uie
2 uie
4 ule
6 uie

Label

RESULT

DATA_OFF
DATA_SIZE

DATA_FMT

DATA

Extra data
1 = Flags
2 = Query size

3 = Query type

Description

Query flags:

0x1 = Query sub-
expressions data

Maximum data format
version handled by
client.

Context key offset
(#1)

Expression offset (#1)
Context key

Expression

Description

Result code:
O=operation completed

1=operation completed
but with warning (#1)

2=operation not
completed due to errors
(#1)

Data offset (#2)
Data size

Data format version:
O=invalid

0x100=R++ tag format
(v1)

0x101=R++ tag format
(v2)

Contents datal4"

© 2025 Robox SpA

54

BCC Communication Protocol v 3.10

(#1) Warning and error informations are contained in DATA, according to DATA_FMT. For
example, for DATA_FMT=0x1xx, any context and/or content errors in the expression, could be
signaled with the tag_error within the resulting data (so there is a chance for more errors).

(#2) Offset is related to the ANSWER

List available remote process

Code: AS + 700

Symbolic: bccProcesslList

This command will request a list of ID of all available remote user process, with the following
parameters:

Offset Type Label Description

0 u32 DSID Debug session ID
(0=Use read-only
session if available)

4 u32 FLAGS Operating flags:

On success, a bccAck[sl is received with the following data:

Offset Type Label Description

0 us8 COUNT N. of process
1 ule PIDO Process ID O
3 ule PID1 Process ID 1

On failure, a beccNack[ed is received. Specific errors:

NACK code Description Extra data
nacklllegalArgs Illegal arguments U1l6 What illegal?

1 =Flags
nacklllegalDebug Illegal debug session

List defined breakpoints
Code: AS + 722

Symbolic: bccBreakplList

This command will request a list of existing breakpoints, with the following parameters:
Offset Type Label Description

0 u32 DSID Debug session ID

On success, a bccAcklsdl is received with following data:

© 2025 Robox SpA

Messages 55

Offset Type Label Description
0 us NLIST No. of break point
1 u32 LIST[] List of breakpoint ID

On failure, a bccNack[R is received. Specific errors:

NACK code Description Extra data

nacklIllegalDebug Illegal debug session

List object blocks
Code: AS + 770

Symbolic: bccObjBlockList

This command will list all loaded and instanced object blocks of the connected device: this is
a standard download transfer sequence[".

REQDATA structure is the following:
Offset Type Label Description

0 u32 FLAGS Request flags:

0x00000001 Compiler
information

0x00000002 Instance
information

0x00000004 Instance
parameters

0x00000008 Instance
occurrence

If initial request fails, bccNack[+edl is received. Specific errors

NACK code Description Extra data
nacklllegalArgs Illegal parameters U1l6 What illegal:
1=Flags

ITEMDATA structure is the following:

Offset Type Label Description

0 uié6 RECID Record type ID:
1=General information

2=Compiler
information

3=Instance
information

© 2025 Robox SpA

56

BCC Communication Protocol v 3.10

Offset

Notes:

Type

USI...]

Label

DATA

Description

4=Instance
parameters

5=Instance
occurrence

Data according type
ID

e Instance information and compiler information records are always referred to the previous
general information record.

e Instance parameter records (multiple) are always referred to the previous instance

information record.

e Instance occurrence records (multiple) are always referred to the previous instance

information record.

Specific data for type 1 (general information):

Offset

+0

+4

+8

+9

+10

+11

+12

+13

+14
+18

+32

Specific data for type 2 (compiler information):

Type
u32

u32

us

us

us

us

us

us

us2
us[14]

STRZ

Label

FLAGS

VERSION

HH

MM

SS

DD

MM

CID

NAME

Description

Class flags:

(see HEADER.FLAGS in
OBB file specifications)

Class version (nvMake
format)

Compilation time
(hour)

Compilation time
(minute)

Compilation time
(second)

Compilation date
(day)

Compilation date
(month)

Compilation date
(year - 2000)

Class unique ID
(reserved)

Object block class
name

© 2025 Robox SpA

Messages 57

Offset Type
+0 u32
+4 STRZ

Specific data for type 3 (instance information):

Offset Type
+0 u32
+4 u32
+8 u32
+12 uU8[20]
+32 STRZ

Specific data for type 4 (instance parameter):

Offset Type
+0 u32
+4 STRZ

Specific data for type 5 (instance occurrence):

Offset Type
+0 u32
+4 ule
+6 u32

List OS attached functions
Code:

Symbolic:

Label Description

FLAGS Compiler flags:
(none)

INFO Compiler informations

Label Description

FLAGS Instance flags:
(none)

DIM Array dimension
(0=none)

IID Instance unique ID

- (reserved)

NAME Instance name

Label Description

ITX Instance index

PARAM Instance parameter

Label Description

FLAGS Occurrence flags:
(none)

PID Owner process ID

ADDR Occurrence address

AS + 736

bccOsAttachedFList

This command will list all operating system attached functions of the connected device: this

is a standard download transfer seguencem.
REQDATA structure is the following:

© 2025 Robox SpA

58

BCC Communication Protocol v 3.10

Offset Type Label Description
0 u32 FLAGS Request flags:
(none)

If initial request fails, bccNack[+ed) is received. Specific errors":

NACK code Description Extra data
nacklllegalArgs Illegal parameters Ul6 What illegal:
1=Flags

ITEMDATA structure is the following:
Offset Type Label Description

0 uié6 RECID Record type ID:
1=Hooking group
2=Attached function

2 UsI...] DATA Data according type
ID
Notes:

e Attached function records (multiple) are always referred to the previous hooking group
record.

Specific data for type 1 (hooking group):

Offset Type Label Description

+0 u32 FLAGS Group flags:
(none)

+4 u32 GID Group ID

+8 us[24] -- (reserved)

+32 STRZ NAME Group name

Specific data for type 2 (attached function):

Offset Type Label Description

+0 u32 FLAGS Function flags:
(none)

+4 u32 FID Function ID

+8 u32 FPAR Function parameter

+12 U8[20] -- (reserved)

+32 STRZ TEXT Function description

© 2025 Robox SpA

Messages 59

Query debug context for a process
Code: AS + 708

Symbolic: bccProcessGetDebugContext

This command queries the debug context for a remote user process: this is a standard data
save sequence.[6

The structure of REQDATA is as follows:

Offset Type Label Description

0 U8[16] - (reserved data saving
sequence[67)

16 ule DSID Debug session ID
(0=Use read-only
session if available)

18 u32 FLAGS Operational flags:

Oxl=Interrogate debug
file

Ox2=Interrogate
external type_.id

22 uie PID Process ID

24 uie DATA_FMT Maximum version of the
data format managed
by the client.

The structure of ACKDATA is as follows:

Offset Type Label Description

0 u8[16] - (reserved data saving
sequencel[6)

16 uileé DATA_FMT Data format version

If the initial request fails, bccNack[+ed) is received. Specific errors:

NACK Code Message description Extra data

nackNotFound Process not found

nacklllegalDebug Illegal debugging session

nacklllegalArgs Illegal parameters Ul6 What illegal:
1 = Flags

2 = Data format version

The structure of INDATA is as follows:

© 2025 Robox SpA

60

BCC Communication Protocol v 3.10

Offset Type Label Description

0 usl...] DATA Context datal+"

Query information for a breakpoint
Code: AS + 723

Symbolic: bccBreakpInfo

This command will request definition information about a specific breakpoint, with following
parameters:

Offset Type Label Description
0 u32 DSID Debug session ID
4 u32 BPID Breakpoint ID

On success, a becAck[6R is received with following data:

Offset Type Label Description
0 u32 - Reserved
4 us MODE Breakpoint modality:
O=Inactive
1=Active
2=Active only for MCNT
times
3=Skip MCNT times before
active
5 ulé6 MCNT Parameter for MODE field
7 us WHAT What to set as
breakpoint:
1=Physical address.
WDATA is:
Offse Type Label Descr
t iption
+0 U32 ADDR Phisic
al
addre
ss

+4 Ul6 TYPE Data
type
(use
VAR
type
code)

© 2025 Robox SpA

Messages 61

Offset

18

19

20

28

32

Type

us

us

us

B8

u32

u32

Label

W DATA[10]

TYPE

COND

CDATA[8]

CMASK

FLAGS

Description

2=Process and step
number. WDATA is:

Offse Type Label Descr

t iption

+0 Uuié PID Proce
ss ID

+2 U32 STEP Step
numb
er

3=Variable. WDATA is a
standard VAR[oY structure
*)

Data for what field, format
according WHAT value.

Breakpoint type:
1=Execution (fetch)
2=Write

3=Read/Write
Breakpoint condition (for

TYPE 2 and 3) refer to
CDATA field:

0=No condition

1=Equal

2=Different

3=Less than

4=Less or equal than
5=Greater than
6=Greater or equal than

7=Mask equal (use CMASK
field)

8=Mask not equal (use
CMASK field)

Breakpoint condition data:
format is depending on
WHAT field (and VAR base
type for WHAT=3).

Breakpoint condition
mask, for COND 7 and 8.
Breakpoint flags:

0x00000001 Stop process
(when BP reached)

© 2025 Robox SpA

BCC Communication Protocol v 3.10

Offset Type Label Description

0x00000002 Stop trace
(when BP reached)

0x00000004 Save storage
(when BP reached)

36 STRZ INFO Optional ascii information
(for WHAT=3 variable
name)

On failure, a becNackledl is received. Specific errors:

NACK code Description Extra data
nackNotFound Breakpoint not found
nacklllegalDebug Illegal debug session

Query process flash information
Code: AS + 706

Symbolic: bccProcessFlashInfo

This command will query for flash information of a remote user process with the following
parameters:

Offset Type Label Description

0 u32 DSID Debug session ID
(0=Use read-only
session, if available)

4 u32 FLAGS Operating flags

8 uie6 PID Process ID

On success, a becAck[6h is received with the following data:

Offset Type Label Description
0 u3s2 - Reserved
4 u32 = Reserved
8 STRZ FILENAME Filename

On failure, a beccNack[#h is received. Specific errors:

NACK code Description Extra data
nackNotFound Process not found
nackFileNotExist Process has no

corresponding flash file

© 2025 Robox SpA

Messages 63

NACK code Description
nacklIllegalDebug Illegal debug session
nacklllegalArgs lllegal parameters
Query process information

Code:

Symbolic:

AS + 701

bccProcessInfo

Extra data

Ul6 What illegal:
1 =Flags

This command will request information about a specific remote user process, with the

following parameters:

Offset Type
0 u32
4 u32
8 uie
10 STRZ

(#1) Search flags are mutually exclusive.

On success, a bccAck[6l is received with the following data:

Offset Type
0 us
1 us
2 us
3 us

Label

DSID

FLAGS

PID

NAME

Label

HH

MM

SS

DD

Description

Debug session ID
(0=Use read-only
session if available)

Operating flags:

0x00000001 Search
by name (#1) (ignore
PID)

0x00000002 Search
by flash filename (#1)
(ignore PID)

Process ID

Optional search
process name (if flag
supplied) or flash
filename (if flag
supplied)

Description

Time (hour) of the
process

Time (minute) of the
process

Time (second) of the
process

Date (day) of the
process

© 2025 Robox SpA

64

BCC Communication Protocol v 3.10

Offset

4

12

Type
us8

us

ule
u32

u32

Label

MO

PID

PTYPE

PCF

Description

Data (month) of the
process

Data (year - 2000) of
the item

Process ID

Process type:
0x00000000 Generic
0x00000001 R 16bit

0x00000002
(riservato)

0x00000003 RHLL
16bit

0x00000004
(riservato)

0x00000005 RHLL
32bit

0x00000006 DSP56
0x00000007 R, 32bit

0x00000008 R3.COF,
32bit

0x00000009 Ladder
diagram

0x0000000A R3.ELF
PPC, 32bit

0x0000000B R3.ELF
X86, 32bit

0x0000000C R3.ELF
ARM, 32bit

0x0000000D System,
32bit

0xO000000E R4.ELF
ARM, 32bit

Process capabilities
flags:

0x00000001 Support
breakpoints

0x00000002 Support
trace

0x00000004 Support
process control

0x00000008 Process
can be stopped

© 2025 Robox SpA

Messages 65

Offset Type Label Description
0x00000010 Process
can be started

0x00000020 Process
can be killed

0x00000040 Support
variable forcing

16 ulé6 CRC16 Binary file crc16 value
(0=Information not
available)

18 u1e - Reserved

20 B[64] DATA Data according

language type

84 STRZ NAME Process name

Specific DATA for PTYPE 0x00000007 (R):
Offset Type Label Description

+0 ulé6 PSTYPE Process subtype:

0x0000 = Unknown
0x0001 =Time

sharing

0x0002 = Rule
0x0003 = Rule on
input

0x0004 = Timed
asynchronous rule

0x0006 = Periodic rule

+2 u32 MSIZE Memory size [byte]

+6 u32 STEPC No. of executable
steps

+10 B[32] CCID Compiler ID string

Specific DATA for PTYPE 0x8 (R3.COF):
Offset Type Label Description

+0 ulé6 PSTYPE Process subtype:

0x0000 = Unknown

0x0001 =Time
sharing

0x0002 = Rule

© 2025 Robox SpA

BCC Communication Protocol v 3.10

Offset Type Label Description
0x0003 = Rule on
input

0x0004 = Timed
asynchronous rule

0x0006 = Periodic rule

+2 u32 MSIZE Memory size [byte]

+6 u32 STEPC No. of executable
steps

+10 B[32] CCID Compiler ID string

+42 ule6 N_EXT No. of external
symbols

+44 ulé6 N_UNR No. of unresolved
symbols

Specific DATA for PTYPE 0x9 (Ladder diagram):
Offset Type Label Description

+0 us8 PTYPE Process type:
0 = Synchronous
1 = High priority
2 = Normal priority

3 = Low priority

+1 us8 TID Target ID:
0x00 = Firmware RTE

+2 ulé6 PFREQ Process frequency
[hz]

+4 B[32] CCID Compiler ID string

+36 u32 VID Task version ID

+40 u32 PLVID Task version ID pre
live changes

Specific DATA for PTYPE OxA (R3.ELF PPC), 0xB (R3.ELF X86), 0xC (R3.ELF ARM), OxE (R4.ELF
ARM) and 0xD (System):

Offset Type Label Description

+0 ulé6 PSTYPE Process subtype:

0x0000 = Unknown

0x0001 = Time
sharing

© 2025 Robox SpA

Messages 67

Offset Type Label Description
0x0002 = Rule
0x0003 = Rule on
input

0x0004 = Timed
asynchronous rule

0x0005 = (reserved)
0x0006 = Periodic rule
0x0007 = (reserved)
0x0008 = (reserved)
0x0009 = (reserved)
0x000A = (reserved)

0x000B = RPE
extension
0x000C = XPL
extension
0x000D = Service
RTE-1

0x000E = Service RPE
0x000F = Service OB
0x0010 = Service RTE-

2

+2 u32 MSIZE Memory size [byte]

+6 u32 STEPC No. of executable
steps

+10 B[32] CCID Compiler ID string

+42 ule6 N_EXT No. of external
symbols

+44 ule N_UNR No. of unresolved
symbols

On failure, a beccNackledl is received. Specific errors:

NACK code Description Extra data

nackNotFound Process not found

nacklllegalDebug Illegal debug session

Query runtime status for process
Code: AS + 704

Symbolic: bccProcessStatus

© 2025 Robox SpA

68

BCC Communication Protocol v 3.10

This command will query for current runtime information of a remote user process with the

following parameters:
Offset

0

4

8

On success, a bccAckledl is received with following data:

Offset

0

6

(#1) Scheduled means loaded in memory but not running.

Label

DSID

FLAGS

PID

Label

STATE

FLAGS

STEP

On failure, a becNackleh is received. Specific errors:

NACK code
nackNotFound

nacklllegalArgs

nacklllegalDebug

Description
Process not found

Illegal arguments

Illegal debug session

Description

Debug session ID
(0=Use read-only
session, if available)

Operating flags

Process ID

Description

Current process
state:
0x0000 Undefined

0x0001 Scheduled
(#1)

0x0002 Running
0x0003 Stopped
0x0004 Stopping
(trying to)
Process flags:

0x00000001 Trace
enabled

0x00000002
Breakpoints defined

0x00000004 Variables
forced

0x00000008 Runtime
errors

Current step

Extra data

U1l6 What illegal?
1 =Flags

© 2025 Robox SpA

Messages 69

Query status for a breakpoint
Code: AS + 724

Symbolic: bccBreakpStatus

This command will request runtime status about a specific breakpoint, with following

parameters:

Offset Type Label Description

0 u32 DSID Debug session ID
4 u32 BPID Breakpoint ID

On success, a bccAckl6dl is received with following data:

Offset Type Label Description
0 u32 STATUS Current breakpoint
status:

0x00000001 Enabled
0x00000002 Reached

4 u32 COUNT Event counter

8 u32 STEP Event step (or IP)
value (-1 no step)

12 DBL VALUE Event value

20 ulé6 PID Event process ID (-1
no process or
internal)

22 STRZ NAME Event (caller) name

On failure, a becNack[eh is received. Specific errors:

NACK code Description Extra data
nackNotFound Breakpoint not found
nacklllegalDebug Illegal debug session

Query trace information for process
Code: AS + 703

Symbolic: bccProcessGetTrace

This command will query for current trace steps for a remote user process, with the
following parameters:

© 2025 Robox SpA

70

BCC Communication Protocol v 3.10

Offset Type Label Description

0 u32 DSID Debug session ID
(0=Use read-only
session, if available)

4 u32 FLAGS Operating flags:
8 ule PID Process ID

On success, a bccAck[6h is received with following data:

Offset Type Label Description
0 us8 NSTEP No. of steps
1 u32 STEPO Step 0

u32 STEPn Step N

NOTE: if trace is not active, it will even respond bccAckl+6h but providing NSTEP=0 (like no
trace data).

On failure, a beccNack[wd is received. Specific errors:

NACK code Description Extra data

nackNotFound Process not found

nacklllegalArgs Illegal arguments U1l6 What illegal?
1 = Flags

nacklllegalDebug Illegal debug session

Start a debug session
Code: AS + 710

Symbolic: bccDebugStart

This command will request remote device to open a debug session: inside this session,

debug command (breakpoint, process, trace, etc.) can be used. The request has following
parameters:

Offset Type Label Description
0 u32 TIMEWD Initial watchdog time
[ms]

On success, a becAck[®h is received with following data:

© 2025 Robox SpA

Messages 71

Offset Type Label Description
0 u32 DSID Debug session unique
ID

On failure, a beccNack[ed is received. Specific errors:

NACK code Description Extra data

nackOutOfResource No more debug session
available (in case of multiple
debug session available)

nackResourceBusy Debug session already in use

(in case of single debug
session available)

Notes:

 In order to keep debug session alive, you have to send periodically the bccDebugWd[4
with the desired watchdog time.

Stop a debug session
Code: AS + 711

Symbolic: bccDebugStop

This command will request remote device to close a debug session. The request has
following parameters:

Offset Type Label Description

0 u32 DSID Debug session ID

On success, a becAck[63 is received with no data.

On failure, a becNackl+h is received. Specific errors:

NACK code Description Extra data

nackNotFound Required debug session (by
ID) not found

Device handling
These messages are used for general handling of a connected device.

System configuration: Modality:
bccSysInfol75), query system information bccGetMode[740, get current mode
bccAutoConfigl e, request device auto bccSetModelss™, set or request mode

configuration

bccResolveProcObject sz'ﬁ, resolve a /proc s
object P Compatibility:
bccAsciiCmd[73, execute a generic ASCII

comman

© 2025 Robox SpA

72

BCC Communication Protocol v 3.10

System reset:

bccSoftwareReset[s™, request a software

reset

reset

bccCMosReset[s™, request a CMos ram reset

Begin an OOW session

Code:

Symbolic:

Only One Write session management:

bccOOW SessionBegin[72Y, begin an OOW
bccHardwareReset[s), request a hardware session

bccOOW SessionEnd[73, end an OOW session.

bccOOW SessionQUeryInfol 7Y, query

information for an OOW session.

AS + 530

bccOOWSessionBegin

This command will request to begin an OOW (Only One Write) session on the current link of

the connected device. Request parameters are the following:

Offset
0

8
15

16

Type

u32

u32

us[7]
us

STRZ

Label

FLAGS

TOUT

TEXTSIZE

TEXT

On success, a becAck[63 is received with no data.

On failure, a becNack[ed is received. Specific errors:

NACK code
nackMissingArgs

nacklllegalArgs

Description
Missing arguments

Illegal arguments

Description

Request flags

0x1 Source TCP port
is used togheter with
source IP address as
owner (supported
only for TCP/IP)

Timeout to keep the
session active [ms]
(1-15000)
(reserved)

Size of the TEXT field

Session (owner)
description

Extra data

U1l6 What illegal:
1=Illega flags
2=Illegal timeout

© 2025 Robox SpA

Messages 73

NACK code Description Extra data
nackNotAuthorized The operation is not
authorized
nackAlreadyActive The OOW session is already
active
nackNotActive The OOW session is not

active (WRITE ALWAYS
modality selected)

nacklllegalContext The operation conext is illegal

(for example if not over an
tep/ip link)

End an OOW session
Code: AS + 531

Symbolic: bccOOWSessionEnd

This command will request to end an OOW (Only One Write) session on the current link of
the connected device. Request parameters are the following:

Offset Type Label Description
0 u32 FLAGS Request flags:
(none)

On success, a bccAck[edl is received with no data.

On failure, a bccNack[+h is received. Specific errors:

NACK code Description Extra data
nackMissingArgs Missing arguments
nackNotAuthorized The operation is not
authorized
nacklllegalContext The operation conext is illegal
(for example if not over an
tep/ip link)

Execute a generic ASCIl command
Code: AS + 518

Symbolic: bccAsciiCmd

This command will request to execute a generic ASCII command into connected device: this
is a standard download transfer sequence[).

REQDATA structure is the following:

© 2025 Robox SpA

74 BCC Communication Protocol v 3.10

Offset Type Label Description
0 B[] CMD ASCII command (0
termined)

ITEMDATA structure is the following:

Offset Type Label Description

0 B[] TEXT ASCII answer

NOTE: for more information about old ASCII command, read the specific device (or
language) user guide.

Query current mode
Code: AS + 508

Symbolic: bccGetMode

This command will get current working mode of the connected device. Request has no
parameters.

On success, a bccAck[63 will received with following data:

Offset Type Label Description

0 us MODE Modality code:
O=Initializing system
1=0 Cycle

2=Programming
3=Execution
4=User defined 0 cycle
5=0ther

1 u32 FIRMWTYPE Firmware type
identification.

For more information
take a look a
FIRMWTYPE field in
answer data of
bccSysInfol7sN

command.
On failure, a becNack[#h is received.
Query info for an OOW session
Code: AS + 532
Symbolic: bccOOWSessionQueryInfo

© 2025 Robox SpA

Messages 75

This command will request information for an OOW session on the current link of the
connected device. Request has no parameters.

On success, a bccAckl 64l is received with the following data:

Offset
0

12

14
15

16

Type

u32

u32

u32

uleé

us
us
STRZ

Label

FLAGS

TOUT

IPADDR

PORT

TEXTSIZE

TEXT

On failure, a becNack[ed is received. Specific errors:

NACK code

nackMissingArgs

nackNotAuthorized

nacklllegalContext

Query system information

Code:

Symbolic:

Description
Missing arguments

The operation is not
authorized

The operation conext is illegal
(for example if not over an
tep/ip link)

AS + 507

bccSysInfo

Description

Status flags

0x1 OOW session
management enabled

0x2 OOW session
opened

0x4 Source TCP port
is used togheter with
source IP address as
owner (supported
only for TCP/IP)

Timeout to keep the
session active [ms]

IPv4 source address
of the session owner

TCP source port of the
session owner

(reserved)
Size of the TEXT field

Session (owner)
description

Extra data

This command will query system information from the connected device. Request has no

parameters.

On success, a becAckl#h will received with following data:

© 2025 Robox SpA

BCC Communication Protocol v 3.10

Offset Type Label Description

0 u32 MANUFACTURER Manufacturer
identification:

0=Generic
1=Robox standard
2=Robox custom
3=Motorola
4=Parker

4 u32 MODEL Model identification,
depending of
manufacturer. Always
valid:

0=Generic

1=Virtual or hardware
emulator

16=Motorola
DSP56803 (obsolete,
with vendor=3)

16=Robox RBXM

17=Robox RBXE or
RBXC

18=Robox RPM
19=Robox uRbx
20=Robox CANSIN
21=Robox RBXM G2

22=Robox CPU PPC
Hi-Drive

23=Robox NIOS
(ethercat)

24=Robox uRMC
25=Robox IMD20

26=Robox CANSIN
RTE

27=Robox RMC G2

28=Robox RBXM
P2020

29=Robox pRMC2
30=Robox pRMC3
31=Robox IMD30
32=Robox pRIO

© 2025 Robox SpA

Messages 77

Offset

Type

u32

Label

OSTYPE

Description

33=Parker generic
device

34=Robox EthIP/PNET
board

35=Robox RP-1
36=Robox RP-2
37=Robox ECATSIN
38=Robox EC2A
39=Robox RP-0

40=Robox Safety
Board

41=Robox ECATSIN
RTE

42=Robox Dongle

43=Robox Integrated
Drive RID20-E

44=Robox RP-2 (Bus
Slave)

45=Robox RHAM
46=Robox puRP-2
47=EFT cabinet board
48=SI-uPAC
Operating system
identification:
0=Generic

1=0SF 16bit

2=0SF 16bit with
integrated language

3=0SF 32bit

4=0SF 32bit with
integrated language

5=Embedded OS for
DSP56

6=Embedded OS for
CANSIN

7=Eprom (OSE)

8=Embedded OS for
NIOS (ethercat)

9=Embedded OS for
IMD

10=Embedded OS for
Parker generic

© 2025 Robox SpA

78

BCC Communication Protocol v 3.10

Offset

12

16

20

24

56

60

Type

u32

u32

u32

B[32]

u32

u32

Label

OSVERSION

FIRMWTYPE

FIRMWVERSION

USERTEXT

USERVERSION

ATTRIB

Description

11=Ethernet IP
interface for
EthIP/PNET board

12=ProfiNET interface
for EthIP/PNET board

13=Embedded OS for
EC2x

Operating system
version (nvMake
format)

Firmware type
identification:

0=Generic
1=RRT 16bit

2=RTT 16bit
integrated in OS

3=RHLL 16bit

4=RHLL 16bit
integrated in OS

5=RHLL 32bit
integrated in OS

6=Device specific
firmware (integrated
in OS)

7=RRT 32bit
integrated in OS

8=RTE 32bit
integrated in OS

Firmware version
(nvMake format)

User software
description

User software version
(nvMake format)

Device attributes:

0x00000001 Remote
variable set available

0x00000002 Intel
32bit HW variable
available

0x00000004 BCC
protocol translation
active (#1)

© 2025 Robox SpA

Messages 79

Offset

64

65

69

73

77

81

82

86

90

94

Type

us

u32

u32

u32

u32

us

u32

u32

u32

ule

Label

TBTYPE

TBVERSION

VARSETID

SLIBTYPE

SLIBVERSION

BIOSTYPE

BIOSVERSION

FIRMW EXT

RPEVERSION

LANGUAGE

Description

Taskbin type
identification:
0=None
1=Classic taskbin

2=Taskbin++ 16bit
version

3=Taskbin++ 32bit
version

Taskbin version
(nvMake format)

Variable current set
unique ID
System library type:
0=Generic

1=RBXLIB (Robox
customized GCC
library)

System library version
(nvMake format)

BIOS type
identification:
0=None

1=Robox BIOS

BIOS version (nvMake
format)

Firmware extensions:

0x00000001 Robox
Path Executor (RPE)

0x00000002 Robox
XPL Executor (XPL)

RPE version (nvMake
format)
System language:

0x0000=Neutral (or
not set)

0x0004=Cinese
semplificato (ZH)

0x0007=Tedesco (DE)

0x0009=Inglese
(UK/US)

© 2025 Robox SpA

80

BCC Communication Protocol v 3.10

Offset

96

100

104

106

108

109

Notes:

Type

u32

u32

uleé

ule

us

u32

Label

XPLVERSION

XPLLANGS

IB_TX

IB_RX

OSETYPE

OSEVERSION

Description

0x000a=Spagnolo
(ES)

0x000c=Francese (FR)
0x0010=Italiano (IT)

0x0012=Coreano
(KO)

0x0016=Portoghese
(PO)

0x0019=Russo (RU)

XPL version (nvMake
format)

XPL languages
supported

0x00000001 RPL

0x00000002 GCODE
RS274

Inter-block transmit
capacity

Inter-block receive
capacity

OSE type
identification:
0=None

1=Robox OSE

OSE version (nvMake
format)

e To validate the structure you must have at least a data area of 69 bytes (aka the base
version of the bccSysInfo command): extra missing data must be considered as 0 filled.

e This command is (and must be) always authorized.

e The attribute #1 means that someone (the device hardware or the software) is
translating BCC protocol from / to another protocol; this should be considered as a
warning that not all documented BCC command could be available and communication

timings can be different than the native BCC protocol timings.

e If IB_TX (or IB_RX) field has value of 0 it will be assumed as default value: the default
value is 4 (for backward compatibility reasons).

On failure, a bccNack[+R is received.

© 2025 Robox SpA

Messages 81

Request a CMOS ramreset
Code: AS + 512

Symbolic: bccCMosReset

This command will request a CMOS ram reset for the connected device . Request has no
parameters.

On success, a becAck[63 is received with no data.

On failure, a bccNack[6d is received.

WARNING: on some device, a successfully CMos ram reset could cause a device reset too.

Request a hardware reset
Code: AS + 506

Symbolic: bccHardwareReset

This command will request the device to have a hardware reset. Request has the following

parameters:
Offset Type Label Description
0 u32 FLAGS Request flags (#1):

0x1 Reset software
for main hardware

0x2 Reset software
for NetController

(#1) If the value of FLAGS is 0, for backward compatibility, the software reset is intended only
for main hardware. If different than 0, the reset operate only on required subjects. Available
from RTE v34.26.0.

On success, a becAck[6d is received with no data: some time after, the device will perform

the required operation: check your hardware/software documentation to have more details
about this operation.

On failure, a beccNackleh is received.

Request a software reset
Code: AS + 505

Symbolic: bccSoftwareReset

This command will request the device to have a software reset. Request has the following

parameters:
Offset Type Label Description
0 u32 FLAGS Request flags (#1):

0x1 Reset software
for main hardware

© 2025 Robox SpA

82

BCC Communication Protocol v 3.10

Offset Type Label Description

0x2 Reset software
for NetController

(#1) If the value of FLAGS is 0, for backward compatibility, the software reset is intended only
for main hardware. If different than 0, the reset operate only on required subjects. Available
from RTE v34.26.0.

On success, a bccAck[) is received with no data: some time after, the device will perform
the required operation: check your hardware/software documentation to have more details
about this operation.

On failure, a bccNack[h is received.

Request device auto configuration
Code: AS + 511

Symbolic: bccAutoConfig

This command will request auto configuration for the connected device . Request has the
following parameters:

Offset Type Label Description

0 u32 FLAGS Operating flags:

0x00000001 Use fast
configuration

0x00000002 Notify
end of operation

0x00000004
Generate file in
update mode

On success, a becAck[dh is received with no data.

On failure, a bccNack[31is received.
Notes:

« If notify required (bit 0x2 in FLAGS,), a bccCompleted[+h is received when operation is
done: if fail, a bccAborted[6 is received.

e The bccCompleted[+s message and the bcecAborted[3 message will have PID as request
command PID.

Resolve a /proc object
Code: AS + 523

Symbolic: bccResolveProcObject

This command will try to resolve a /proc object, based on specified data. Request
parameters are the following:

© 2025 Robox SpA

Messages 83

Offset Type Label Description
0 u32 FLAGS Request flags
4 u32 SRC Query source:

1 = Query by Robox
station ID (U16)

8 u32 OoP Query operation:

1 = Load file via
FB/FOE

2 = Save file via
FB/FOE

12 u32 - (reserved)

16 B[] DATA Query data (depend
on query source)

On success, a bccAckld is received with following data:

Offset Type Label Description
0 u32 FLAGS Reply flags
4 u32 - (reserved)
8 B[] OBJPATH The resolved /proc

object path

On failure, a becNackl+d is received. Specific errors:

NACK code Description Extra data

nackMissingArgs Missing arguments

nacklllegalArgs Illegal arguments U1l6 What illegal:
1=Flags

2=Query source
3=Query operation

4=Query data

nackNotFound Object not found

Set current mode

Code: AS + 509

Symbolic: bccSetMode

This command will try to set current working mode of the connected device. Request has
the following parameters:

© 2025 Robox SpA

84

BCC Communication Protocol v 3.10

Offset Type Label Description
0 us MODE Request modality
code:

O=Initializing system
1=0 Cycle
2=Programming
3=Execution

4=User defined 0
cycle

5=0ther
1 us8 HOW How to set mode:
0 = Immediately

1 = As soon as

possibile
On success, a bccAck[sl is received with no data.
On failure, a bccNack[+R is received. Specific errors:
NACK code Description Extra data
nacklllegalArgs Illegal parameters Ul6 Param ID

1 = Bad modality

2 = Bad set mode

Field bus device handling
These messages are used for general handling of a directly connected field bus devices.
Local Interface: CANOpen Interface:

e bccFbReadlocalEntryl o), read an entry e bccFbReadCanEntryls™, read an entry

e bccFbWritelocalEntry[iod), write an entry bccFbWriteCanEntry[eo, write an entry

o bccFbWritelocalEntryE[+13), write an bccFbW rite CanEntryE[108), write an
extended entry extended entry

e bccFbReadLlocalNmt[e, read NMT status bccFbReadCanNmt[e, read NMT status

e bccFbWriteLocalNmt[+18), write NMT bccFbW rite CanNmt[+13), write NMT command
command

Interface commands:
EtherCAT Interface:

e bccFbReadIF[ssY, read interface information
e bccFbReadCoeEntryleoh, read an entry

o bccFbWriteIF[+R, write interface information
e bccFbWriteCoeEntry[10d), write an entry

e bccFbWriteCoeEntryE[108), write an Miscell _
extended entry Iscellaneous:

o bccFbReadEcatNmtls™), read NMT status ~ Lield bus entry data type el

© 2025 Robox SpA

Messages 85

e bcecFbWriteEcatNmt[ss), force NMT status Field bus supported interface type IDs[e

Field bus supported interface type IDs

These are the currently reserved range of interface type IDs:

Interface type ID Description
0x00000000-0x0000FFFF (reserved)
0x00010000-0x0002FFFF IMD class devices
0x00030000-0x0003FFFF MRIO class devices
0x00040000-0x0004FFFF EC2x class devices
0x00050000-0x0005FFFF Safety Board class devices
0x00060000-0x000FFFFF (reserved)
0x00100000-0x001FFFFF (revoked)
0x00200000-0x002FFFF EVER devices
0x00300000-0x004FFFFF (revoked)
0x00500000-0xFFFFFFFF (reserved)

NOTE: specific device type ID are defined in the specific XML configuration file.

Filed bus entry data types

In reading and writing entries from the object dictionary you have to specific the entry data
type, that is a combination of the following options:

Value Description

0x00000001 8bit data

0x00000002 16bit data

0x00000004 32bit data

0x00000008 64bit data

0x00000010 Signed data (otherwise unsigned data)
0x00000020 Floating point data (otherwise fixed data)
0x00000040 Record type

0x00000080 Type parameter to be stored in flash
0x00000100 Object readable

0x00000200 Object writable

0x00000400 Only in pre-operational mode

© 2025 Robox SpA

BCC Communication Protocol v 3.10

Value Description

0x00000800 Only with IGBT bridge disabled

0x00001000 Object can be mapped in PDO area

0x00002000 Object write require special handling (not all
values in range are valid)

0x00004000 (reserved)

0x00008000 (reserved)

0x00010000 (reserved)

0x00020000 (reserved)

0x00040000 (reserved)

0x00080000 (reserved)

0x00100000 Object is a O-termined string

0x00200000 (reserved)

Force NMT status to EtherCAT Interface
Code: AS + 913

Symbolic: bccFbWriteEcatNmt

This command will force the NMT status to the device EtherCAT Interface. Request
parameters are the following:

Offset Type Label Description

0 u3s2 FLAGS Request flags: (none)
4 u32 NODE Node address

8 u32 FSTATUS NMT status to force:

0=Remove forced
1=Request Init

2=Reuqgest
PreOperational

4=Request
SafeOperational

8=Request
Operational

12 u32 FTOUT NMT force timeout
[ms]

On success, a bccAcklsl is received with following data:

© 2025 Robox SpA

Messages 87

Offset Type Label Description

0 u32 FLAGS Reply flags: (none)

4 u32 NODE Node address (echo)

8 u32 STATUS Actual NMT status:
1=Init
2=PreOperational
3=Boot
4=SafeOperational

8=0perational

12 u32 FSTATUS Forced NMT status:
1=Init
2=PreOperational
3=Boot
4=SafeOperational

8=0perational

16 u32 FTOUT NMT force timeout

[ms] (echo)

On failure, a beccNack[d is received. Specific errors:

NACK code
nackMissingArgs

nacklllegalArgs

nackInterfaceNotFound

nackInterfaceNotReady

Description
Missing arguments

Illegal arguments

EtherCAT interface not
present

EtherCAT interface not
running

Read an entry from CANopen Interface

Code:

Symbolic:

AS + 920

Extra data

U1l6 What illegal:
1=Flags

2=Node address
3=NMT status
4=NMT force timeout

bccFbReadCanEntry

This command will read an entry from the device CANopen Interface object dictionary.
Request parameters are the following:

© 2025 Robox SpA

88

BCC Communication Protocol v 3.10

Offset Type
0 u32
4 u32
8 u32
12 u32

On success, a bccAck[el is received with following data:

Offset Type
0 u32
4 u32
8 u32
12 u32
16

Label

FLAGS

NODE
IX

SUBIX

Label

FLAGS

NODE
IX

SUBIX

EXDATA

Description

Request flags:

0x00000001 Request
the ADDR field

0x00000002 Request
the DEFVAL field

0x00000004 Request
the MINVAL field

0x00000008 Request
the MAXVAL field

0x00000010 Request
the TEXT field

0x40000000 Request
the ERRTEXT field
Node address

Entry index

Entry sub-index

Description

Reply flags:

0x00000001 ADDR
field present

0x00000002 DEFVAL
field present

0x00000004 MINVAL
field present

0x00000008 MAXVAL
field present

0x00000010 TEXT
field present

0x40000000 ERRTEXT
field present

0x80000000
ERRCODE field
present

Node address (echo)
Entry index (echo)

Entry sub-index
(echo)

Extra data

The EXDATA structure is the following when the 0x80000000 flag is set in FLAGS:

© 2025 Robox SpA

Messages 89

Offset Type Label Description
+16 u32 ERRCODE Error code
+20 STRZ ERRTEXT Error text (#1)

(#1) Present only when 0x40000000 is set in FLAGS.
Otherwise, if the 0x80000000 flags is not set in FLAGS, the EXDATA structure is the

following:

Offset Type Label Description

+16 u32 DTYPE Entry data type[ss)
+20 EXDATA2 Extra data 2

If the 0x100000 is set in DTYPE, the EXDATA2 structure is the following:
Offset Type Label Description

+20 STRZ VALUE Entry actual value

In all other cases, the EXDATA2 structure is the following:

Offset Type Label Description
+20 <T> VALUE Entry actual value
+28 u32 ADDR Entry address (#1)
<T> DEFVAL Entry default value
(#2)
<T> MINVAL Entry minimum value
(#3)
<T> MAXVAL Entry maximum value
(#4)
STRZ TEXT Entry description (#5)

(#1) Present only when 0x00000001 is set in FLAGS.

(#2) Present only when 0x00000002 is set in FLAGS (offset depends of previous fields
presence).

(#3) Present only when 0x00000004 is set in FLAGS (offset depends of previous fields
presence).

(#4) Present only when 0x00000008 is set in FLAGS (offset depends of previous fields
presence).

(#5) Present only when 0x00000010 is set in FLAGS (offset depends of previous fields
presence).

Data type <T> is determined as following:

o If the (DTYPE & Ox3F) value is 0x18, the type T is 164
e If the (DTYPE & 0x3F) value is 0x8, the type T is U64
e In all other cases T is DBL

On failure, a bccNack[+h is received. Specific errors:

© 2025 Robox SpA

90

BCC Communication Protocol v 3.10

NACK code Description

nackMissingArgs Missing arguments

nacklllegalArgs Illegal arguments

nackInterfaceNotFound CANopen interface not
present

nackInterfaceNotReady CANopen interface not
running

Read an entry from EtherCAT (CoE) Interface

Code: AS + 910

Extra data

Ul6 What illegal:
1=Flags
2=Node address

3=Index/sub-index

Symbolic: bccFbReadCoeEntry

This command will read an entry from the device EtherCAT (CoE) Interface object dictionary.

Request parameters are the following:

Offset Type Label
0 u32 FLAGS
4 u32 NODE
8 u32 IX

12 u32 SUBIX

On success, a bccAck[6d is received with following data:

Offset Type Label
0 u32 FLAGS

Description

Request flags:

0x00000001 Request
the ADDR field

0x00000002 Request
the DEFVAL field

0x00000004 Request
the MINVAL field

0x00000008 Request
the MAXVAL field

0x00000010 Request
the TEXT field

0x40000000 Request
the ERRTEXT field

Node address
Entry index

Entry sub-index

Description

Reply flags:

© 2025 Robox SpA

Messages 91

Offset Type Label Description
0x00000001 ADDR
field present

0x00000002 DEFVAL
field present

0x00000004 MINVAL
field present

0x00000008 MAXVAL
field present

0x00000010 TEXT
field present

0x40000000 ERRTEXT
field present

0x80000000
ERRCODE field
present
4 u32 NODE Node address (echo)
8 u32 IX Entry index (echo)
12 u32 SUBIX Entry sub-index
(echo)
16 EXDATA Extra data

The EXDATA structure is the following when the 0x80000000 flag is set in FLAGS:

Offset Type Label Description
+16 u32 ERRCODE Error code
+20 STRZ ERRTEXT Error text (#1)

(#1) Present only when 0x40000000 is set in FLAGS.
Otherwise, if the 0x80000000 flag is not set in FLAGS, the EXDATA structure is the following:

Offset Type Label Description
+16 u32 DTYPE Entry data type[ss
+20 EXDATA2 Extra data 2

If the 0x100000 is set in DTYPE, the EXDATA2 structure is the following:

Offset Type Label Description

+20 STRZ VALUE Entry actual value

In all other cases, the EXDATA2 structure is the following:
Offset Type Label Description

+20 <T> VALUE Entry actual value

© 2025 Robox SpA

92

BCC Communication Protocol v 3.10

Offset Type
+28 u32

<T>

<T>

<T>

STRZ

Label
ADDR

DEFVAL

MINVAL

MAXVAL

TEXT

(#1) Present only when 0x00000001 is set in FLAGS.
(#2) Present only when 0x00000002 is set in FLAGS (offset depends of previous fields

presence).

Description
Entry address (#1)

Entry default value
(#2)

Entry minimum value
(#3)

Entry maximum value
(#4)

Entry description (#5)

(#3) Present only when 0x00000004 is set in FLAGS (offset depends of previous fields

presence).

(#4) Present only when 0x00000008 is set in FLAGS (offset depends of previous fields

presence).

(#5) Present only when 0x00000010 is set in FLAGS (offset depends of previous fields

presence).

Data type <T> is determined as following:
e If the (DTYPE & Ox3F) value is 0x18, the type Tis 164
o If the (DTYPE & Ox3F) value is 0x8, the type Tis U64

e In all other cases T is DBL

On failure, a beccNack[eh is received. Specific errors:

NACK code
nackMissingArgs

nacklIllegalArgs

nackInterfaceNotFound

nackInterfaceNotReady

Description
Missing arguments

Illegal arguments

COE interface not present

COE interface not running

Read an entry from Local Interface

Code:

Symbolic:

AS + 900

Extra data

U16 Whatillegal:
1=Flags
2=Node address

3=Index/sub-index

bccFbReadLocalEntry

This command will read an entry from the device Local Interface object dictionary. Request

parameters are the following:

© 2025 Robox SpA

Messages 93

Offset
0

8

12

On success, a bccAck[el is received with following data:

Offset
0

12

16

Type
u32

u32
u32
u32

Type
u32

u32
u32
u32

Label

FLAGS

NODE
IX

SUBIX

Label

FLAGS

NODE
IX

SUBIX

EXDATA

Description

Request flags:

0x00000001 Request
the ADDR field

0x00000002 Request
the DEFVAL field

0x00000004 Request
the MINVAL field

0x00000008 Request
the MAXVAL field

0x00000010 Request
the TEXT field

0x40000000 Request
the ERRTEXT field
Node address

Entry index

Entry sub-index

Description

Reply flags:

0x00000001 ADDR
field present

0x00000002 DEFVAL
field present

0x00000004 MINVAL
field present

0x00000008 MAXVAL
field present

0x00000010 TEXT
field present

0x40000000 ERRTEXT
field present

0x80000000
ERRCODE field
present

Node address (echo)
Entry index (echo)

Entry sub-index
(echo)

Extra data

The EXDATA structure is the following when the 0x80000000 flag is set in FLAGS:

© 2025 Robox SpA

94

BCC Communication Protocol v 3.10

Offset Type Label Description
+16 u32 ERRCODE Error code
+20 STRZ ERRTEXT Error text (#1)

(#1) Present only when 0x40000000 is set in FLAGS.

Otherwise, if the 0x80000000 flags is not set in FLAGS, the EXDATA structure is the
following:

Offset Type Label Description
+16 u3s2 DTYPE Entry data type[ess
+20 EXDATA2 Extra data 2

If the 0x100000 is set in DTYPE, the EXDATA2 structure is the following:
Offset Type Label Description

+20 STRZ VALUE Entry actual value

Otherwise the EXDATAZ2 structure is the following:

Offset Type Label Description
+20 <T> VALUE Entry actual value
+28 u32 ADDR Entry address (#1)
<T> DEFVAL Entry default value
(#2)
<T> MINVAL Entry minimum value
(#3)
<T> MAXVAL Entry maximum value
(#4)
STRZ TEXT Entry description (#5)

(#1) Present only when 0x00000001 is set in FLAGS.

(#2) Present only when 0x00000002 is set in FLAGS (offset depends of previous fields
presence).

(#3) Present only when 0x00000004 is set in FLAGS (offset depends of previous fields
presence).

(#4) Present only when 0x00000008 is set in FLAGS (offset depends of previous fields
presence).

(#5) Present only when 0x00000010 is set in FLAGS (offset depends of previous fields
presence).

Data type <T> is determined as following:

o If the (DTYPE & Ox3F) value is 0x18, the type <T> is 164
e If the (DTYPE & 0x3F) value is 0x8, the type <T> is U64
e In all other cases <T> is DBL

On failure, a bccNack[+h is received. Specific errors:

© 2025 Robox SpA

Messages 95

NACK code Description Extra data

nackMissingArgs Missing arguments

nacklllegalArgs Illegal arguments U1l6 What illegal:
1=Flags

2=Node address

3=Index/sub-index
nackInterfaceNotFound Local interface not present

nackInterfaceNotReady Local interface not running

Read interface information

Code: AS + 950

Symbolic: bccFbReadIF

This command will read interfaces information from the device. Request parameters are the

following:

Offset Type Label Description

0 u32 FLAGS Request flags:
0x00000001 Request
all interfaces

4 u32 NODE Node address

On success, a bccAck[6h is received with following data:
Offset Type Label Description

0 u3s2 FLAGS Reply flags:

0x00000001 All
interfaces present

4 u32 NODE Node address (echo)

8 u32 IFTYPE Interface type
identifier asgl

12 u32 NUMIF Number of interface
types (#1)

16 u32 IFTYPESO Interface type 0 (#1)

20 u32 IFTYPES1 Interface type 1 (#1)

(#1) These fields are present only if the flag 0x00000001 is set in FLAGS.

On failure, a becNacklwh is received. Specific errors:

© 2025 Robox SpA

96

BCC Communication Protocol v 3.10

NACK code Description Extra data

nackMissingArgs Missing arguments

nacklllegalArgs Illegal arguments U1l6 What illegal:
1=Flags

2=Node address

Read NMT status from CANopen Interface
Code: AS + 922

Symbolic: bccFbReadCanNmt

This command will read the NMT status from the device CANopen Interface. Request
parameters are the following:

Offset Type Label Description

0 u32 FLAGS Request flags:

0x40000000 Request
the ERRTEXT field

4 u32 NODE Node address

On success, a bccAck[sl is received with following data:

Offset Type Label Description

0 u32 FLAGS Reply flags:

0x40000000 ERRTEXT
field present

0x80000000
ERRCODE field
present

4 u32 NODE Required node
address

8 EXDATA Extra data

The EXDATA structure is the following when the 0x80000000 flag is set in FLAGS:

Offset Type Label Description
+8 u32 ERRCODE Error code
+12 STRZ ERRTEXT Error text (#1)

(#1) Present only when 0x40000000 is set in FLAGS.

Otherwise, if the 0x80000000 flags is not set in FLAGS, the EXDATA structure is the
following:

Offset Type Label Description
+8 u32 STATUS Actual NMT status:

© 2025 Robox SpA

Messages 97

Offset Type Label Description

0=Init
1=Reset node

2=Reset
communication

4=Stop
5=0perational

127 = PreOperational

On failure, a becNack(dlis received. Specific errors:

NACK code Description Extra data
nackMissingArgs Missing arguments
nacklllegalArgs Illegal arguments U16 What illegal:
1=Flags
2=Node address
nacklInterfaceNotFound CANopenl interface not
present
nackInterfaceNotReady CAquen interface not
running

Read NMT status from EtherCAT Interface
Code: AS + 912

Symbolic: bccFbReadEcatNmt

This command will read the NMT status from the device EtherCAT Interface. Request
parameters are the following:

Offset Type Label Description
0 u32 FLAGS Request flags: (none)
4 u32 NODE Node address

On success, a bccAckl sl is received with following data:

Offset Type Label Description

0 u32 FLAGS Reply flags: (none)

4 u32 NODE Node address (echo)

8 u32 STATUS Actual NMT status:
1=Init

2=PreOperational

© 2025 Robox SpA

98

BCC Communication Protocol v 3.10

Offset

Type

12 u32

Label

FSTATUS

On failure, a beccNack(4l is received. Specific errors:

NACK code
nackMissingArgs

nacklllegalArgs

nackInterfaceNotFound

nackInterfaceNotReady

Description
Missing arguments

Illegal arguments

EtherCAT interface not
present

EtherCAT interface not
running

Read NMT status from Local Interface

Code:

Symbolic:

AS + 902

Description

3=Boot
4=SafeOperational
8=0perational
Forced NMT status:
1=Init
2=PreOperational
3=Boot
4=SafeOperational

8=0perational

Extra data

U16 What illegal:
1=Flags

2=Node address

bccFbReadLocalNmt

This command will read the NMT status from the device Local Interface. Request parameters

are the following:

Offset Type
0 u32
4 u32

On success, a bccAck[6h is received with following data:

Offset
0

Type

u32

Label

FLAGS

NODE

Label

FLAGS

Description

Request flags:

0x40000000 Request
the ERRTEXT field

Node address

Description

Reply flags:

© 2025 Robox SpA

Messages 99

Offset Type Label Description

0x40000000 ERRTEXT
field present

0x80000000
ERRCODE field
present
4 u32 NODE Node address (echo)
8 EXDATA Extra data

The EXDATA structure is the following when the 0x80000000 flag is set in FLAGS:

Offset Type Label Description
+8 u32 ERRCODE Error code
+12 STRZ ERRTEXT Error text (#1)

(#1) Present only when 0x40000000 is set in FLAGS.
Otherwise, if the 0x80000000 flags is not set in FLAGS, the EXDATA structure is the

following:
Offset Type Label Description
+8 u32 STATUS Actual NMT status:

0=Init
1=PreOperational

2=0perational

On failure, a beccNackledl is received. Specific errors:

NACK code Description Extra data
nackMissingArgs Missing arguments
nacklllegalArgs Illegal arguments Ul6 What illegal:
1=Flags
2=Node address
nackInterfaceNotFound Local interface not present
nackInterfaceNotReady Local interface not running

Write an entry to CANopen Interface
Code: AS + 921

Symbolic: bccFbWriteCanEntry

This command will write an entry to the device CANopen Interface object dictionary.
Request parameters are the following:

© 2025 Robox SpA

100

BCC Communication Protocol v 3.10

Offset Type
0 u32
4 u32
8 u32
12 u32
16 DBL

On success, a bccAck[6l is received with following data:

Offset Type
0 u32
4 u32
8 u32
12 u32
16

Label

FLAGS

NODE
IX
SUBIX

VALUE

Label

FLAGS

NODE
IX

SUBIX

EDATA

Description

Request flags:

0x00000001 Request
the ADDR field

0x00000002 Request
the DEFVAL field

0x00000004 Request
the MINVAL field

0x00000008 Request
the MAXVAL field

0x00000010 Request
the TEXT field

0x40000000 Request
the ERRTEXT field

Node address
Entry index
Entry sub-index

Entry value

Description

Reply flags:

0x00000001 ADDR
field present

0x00000002 DEFVAL
field present

0x00000004 MINVAL
field present

0x00000008 MAXVAL
field present

0x00000010 TEXT
field present

0x40000000 ERRTEXT
field present

0x80000000
ERRCODE field
present

Node address (echo)

Entry index (echo)

Entry sub-index
(echo)

Extra data

© 2025 Robox SpA

Messages 101

The EXDATA structure is the following when the 0x80000000 flag is set in FLAGS:

Offset Type
+16 u32
+20 STRZ

Label

ERRCODE

ERRTEXT

(#1) Present only when 0x40000000 is set in FLAGS.
Otherwise the EXDATA structure is the following:

Offset Type
+16 u32
+20 DBL
+28 u32
DBL
DBL
DBL
STRZ

Label
DTYPE
VALUE
ADDR
DEFVAL

MINVAL

MAXVAL

TEXT

(#1) Present only when 0x00000001 is set in FLAGS.
(#2) Present only when 0x00000002 is set in FLAGS (offset depends of previous fields

presence).

Description
Error code

Error text (#1)

Description
Entry data type[es)
Entry value (echo)
Entry address (#1)
Entry default value (#2)

Entry minimum value
(#3)

Entry maximum value
(#4)

Entry description (#5)

(#3) Present only when 0x00000004 is set in FLAGS (offset depends of previous fields

presence).

(#4) Present only when 0x00000008 is set in FLAGS (offset depends of previous fields

presence).

(#5) Present only when 0x00000010 is set in FLAGS (offset depends of previous fields

presence).

On failure, a beccNack[d is received. Specific errors:

NACK code
nackMissingArgs

nacklIllegalArgs

nackInterfaceNotFound

nackInterfaceNotReady

Description
Missing arguments

Illegal arguments

CANopen interface not
present

CANopen interface not
running

Extra data

U16 What illegal:
1=Flags
2=Node address

3=Index/sub-index

© 2025 Robox SpA

102

BCC Communication Protocol v 3.10

Write an entry to EtherCAT (CoE) Interface

Code: AS + 911

Symbolic: bccFbWriteCoeEntry

This command will write an entry to the device EtherCAT (CoE) Interface object dictionary.

Request parameters are the following:

Offset Type Label

0 u32 FLAGS
4 u32 NODE

8 u32 IX

12 u32 SUBIX
16 DBL VALUE

On success, a bccAckl il is received with following data:

Offset Type Label
0 u32 FLAGS

Description

Request flags:

0x00000001 Request
the ADDR field

0x00000002 Request
the DEFVAL field

0x00000004 Request
the MINVAL field

0x00000008 Request
the MAXVAL field

0x00000010 Request
the TEXT field

0x40000000 Request
the ERRTEXT field
Node address

Entry index

Entry sub-index

Entry value

Description

Reply flags:

0x00000001 ADDR
field present

0x00000002 DEFVAL
field present

0x00000004 MINVAL
field present

0x00000008 MAXVAL
field present

0x00000010 TEXT
field present

0x40000000 ERRTEXT
field present

© 2025 Robox SpA

Messages 103

Offset Type Label Description
0x80000000
ERRCODE field
present

4 u32 NODE Node address (echo)

8 u32 IX Entry index (echo)

12 u32 SUBIX Entry sub-index
(echo)

16 EDATA Extra data

The EXDATA structure is the following when the 0x80000000 flag is set in FLAGS:

Offset Type Label Description
+16 u32 ERRCODE Error code
+20 STRZ ERRTEXT Error text (#1)

(#1) Present only when 0x40000000 is set in FLAGS.
Otherwise the EXDATA structure is the following:

Offset Type Label Description
+16 u32 DTYPE Entry data type[ss)
+20 DBL VALUE Entry value (echo)
+28 u32 ADDR Entry address (#1)
DBL DEFVAL Entry default value (#2)
DBL MINVAL Entry minimum value
(#3)
DBL MAXVAL Entry maximum value
(#4)
STRZ TEXT Entry description (#5)

(#1) Present only when 0x00000001 is set in FLAGS.

(#2) Present only when 0x00000002 is set in FLAGS (offset depends of previous fields
presence).

(#3) Present only when 0x00000004 is set in FLAGS (offset depends of previous fields
presence).

(#4) Present only when 0x00000008 is set in FLAGS (offset depends of previous fields
presence).

(#5) Present only when 0x00000010 is set in FLAGS (offset depends of previous fields
presence).

On failure, a beccNack[dl is received. Specific errors:

© 2025 Robox SpA

104

BCC Communication Protocol v 3.10

NACK code
nackMissingArgs

nacklllegalArgs

nackInterfaceNotFound

nackInterfaceNotReady

Description
Missing arguments

Illegal arguments

EtherCAT (CoE) interface not
present

EtherCAT (CoE) interface not
running

Write an entry to Local interface

Code:

Symbolic:

AS + 901

Extra data

Ul6 What illegal:
1=Flags
2=Node address

3=Index/sub-index

bccFbWriteLocalEntry

This command will write an entry to the device Local Interface object dictionary. Request

parameters are the following:

Offset Type
0 u32
4 u32
8 u32
12 u32
16 DBL

Label

FLAGS

NODE
IX
SUBIX

VALUE

On success, a becAck[®h is received with following data:

Offset

0 u32

Type

Label

FLAGS

Description

Request flags:

0x00000001 Request
the ADDR field

0x00000002 Request
the DEFVAL field

0x00000004 Request
the MINVAL field

0x00000008 Request
the MAXVAL field

0x00000010 Request
the TEXT field

0x40000000 Request
the ERRTEXT field

Node address
Entry index
Entry sub-index

Entry value

Description

Reply flags:

© 2025 Robox SpA

Messages 105

Offset Type Label Description
0x00000001 ADDR
field present

0x00000002 DEFVAL
field present

0x00000004 MINVAL
field present

0x00000008 MAXVAL
field present

0x00000010 TEXT
field present

0x40000000 ERRTEXT
field present

0x80000000
ERRCODE field
present
4 u32 NODE Node address (echo)
8 u32 IX Entry index (echo)
12 u32 SUBIX Entry sub-index
(echo)
16 EDATA Extra data

The EXDATA structure is the following when the 0x80000000 flag is set in FLAGS:

Offset Type Label Description
+16 u32 ERRCODE Error code
+20 STRZ ERRTEXT Error text (#1)

(#1) Present only when 0x40000000 is set in FLAGS.
Otherwise the EXDATA structure is the following:

Offset Type Label Description
+16 u32 DTYPE Entry data type[e)
+20 DBL VALUE Entry value (echo)
+28 u3s2 ADDR Entry address (#1)
DBL DEFVAL Entry default value (#2)
DBL MINVAL Entry minimum value
(#3)
DBL MAXVAL Entry maximum value
(#4)
STRZ TEXT Entry description (#5)

(#1) Present only when 0x00000001 is set in FLAGS.

© 2025 Robox SpA

106

BCC Communication Protocol v 3.10

(#2) Present only when 0x00000002 is set in FLAGS (offset depends of previous fields
presence).

(#3) Present only when 0x00000004 is set in FLAGS (offset depends of previous fields
presence).

(#4) Present only when 0x00000008 is set in FLAGS (offset depends of previous fields
presence).

(#5) Present only when 0x00000010 is set in FLAGS (offset depends of previous fields
presence).

On failure, a beccNackldl is received. Specific errors:

NACK code Description Extra data

nackMissingArgs Missing arguments

nacklllegalArgs Illegal arguments U1l6 What illegal:
1=Flags

2=Node address
3=Index/sub-index

nackiInterfaceNotFound Local interface not present

nackInterfaceNotReady Local interface not running

Write an extended entry to CANopen Interface
Code: AS + 924

Symbolic: bccFbWriteCanEntryE

This command will write an extended entry to the device CANopen Interface object
dictionary. Request parameters are the following:

Offset Type Label Description

0 u32 FLAGS Request flags:

0x00000001 Request
the ADDR field

0x00000002 Request
the DEFVAL field

0x00000004 Request
the MINVAL field

0x00000008 Request
the MAXVAL field

0x00000010 Request
the TEXT field

0x40000000 Request
the ERRTEXT field

4 u32 NODE Node address

8 u32 IX Entry index

© 2025 Robox SpA

Messages 107

Offset Type Label Description

12 u32 SUBIX Entry sub-index
16 u32 DTYPE Entry data type[es)
20 <T> VALUE Entry value

Data type <T> is determined as following:

e If the (DTYPE & 0x3F) value is 0x18, the type <T> is 164

e If the (DTYPE & 0x3F) value is 0x8, the type <T> is U64

e If the (DTYPE & 0x100000) value is 0x100000 , the type <T> is STRZ
e In all other cases <T> is DBL

On success, a bccAck[6d) is received with following data:

Offset Type Label Description

0 u32 FLAGS Reply flags:

0x00000001 ADDR
field present

0x00000002 DEFVAL
field present

0x00000004 MINVAL
field present

0x00000008 MAXVAL
field present

0x00000010 TEXT
field present

0x40000000 ERRTEXT
field present

0x80000000
ERRCODE field
present
4 u32 NODE Node address (echo)
8 u32 IX Entry index (echo)
12 u32 SUBIX Entry sub-index
(echo)
16 EXDATA Extra data

The EXDATA structure is the following when the 0x80000000 flag is set in FLAGS:

Offset Type Label Description
+16 u32 ERRCODE Error code
+20 STRZ ERRTEXT Error text (#1)

(#1) Present only when 0x40000000 is set in FLAGS.

© 2025 Robox SpA

108 BCC Communication Protocol v 3.10

Otherwise, if the 0x80000000 flags is not set in FLAGS, the EXDATA structure is the

following:

Offset Type Label Description

+16 u32 DTYPE Entry data type[ss)
+20 EXDATA2 Extra data 2

If the 0x100000 is set in DTYPE, the EXDATA2 structure is the following:

Offset Type Label Description

+20 STRZ VALUE Entry actual value

Otherwise the EXDATA2 structure is the following:

Offset Type Label Description
+20 <T> VALUE Entry actual value
+28 u32 ADDR Entry address (#1)
<T> DEFVAL Entry default value
(#2)
<T> MINVAL Entry minimum value
(#3)
<T> MAXVAL Entry maximum value
(#4)
STRZ TEXT Entry description (#5)

(#1) Present only when 0x00000001 is set in FLAGS.

(#2) Present only when 0x00000002 is set in FLAGS (offset depends of previous fields
presence).

(#3) Present only when 0x00000004 is set in FLAGS (offset depends of previous fields
presence).

(#4) Present only when 0x00000008 is set in FLAGS (offset depends of previous fields
presence).

(#5) Present only when 0x00000010 is set in FLAGS (offset depends of previous fields
presence).

Data type <T> is determined as following:

o If the (DTYPE & Ox3F) value is 0x18, the type <T> is 164
e If the (DTYPE & Ox3F) value is 0x8, the type <T> is U64
e In all other cases <T> is DBL

On failure, a bccNack[R is received. Specific errors:

NACK code Description Extra data

nackMissingArgs Missing arguments

nacklllegalArgs Illegal arguments U1l6 What illegal:
1=Flags

© 2025 Robox SpA

Messages 109

NACK code

nackInterfaceNotFound

nackInterfaceNotReady

Description

CANopen interface not
present

CANopen interface not
running

Write an extended entry to EtherCAT (CoE) Interface

Code:

Symbolic:

AS + 914

Extra data

2=Node address
3=Index/sub-index

4=Data type

bccFbWriteCoeEntryE

This command will write an extended entry to the device EtherCAT (CoE) Interface object
dictionary. Request parameters are the following:

Offset
0

12
16
20

Type

u32

u32
u32
u32
u32

<T>

Label

FLAGS

NODE
IX
SUBIX
DTYPE

VALUE

Data type <T> is determined as following:

e If the (DTYPE & 0x3F) value is 0x18, the type <T> is 164
e If the (DTYPE & 0x3F) value is 0x8, the type <T> is U64
e If the (DTYPE & 0x100000) value is 0x100000 , the type <T> is STRZ

e In all other cases <T> is DBL

Description

Request flags:

0x00000001 Request
the ADDR field

0x00000002 Request
the DEFVAL field

0x00000004 Request
the MINVAL field

0x00000008 Request
the MAXVAL field

0x00000010 Request
the TEXT field

0x40000000 Request
the ERRTEXT field

Node address
Entry index
Entry sub-index

Entry data type[es)

Entry value

© 2025 Robox SpA

110 BCC Communication Protocol v 3.10

On success, a bccAck[ed) is received with following data:
Offset Type Label Description

0 u32 FLAGS Reply flags:

0x00000001 ADDR
field present

0x00000002 DEFVAL
field present

0x00000004 MINVAL
field present

0x00000008 MAXVAL
field present

0x00000010 TEXT
field present

0x40000000 ERRTEXT
field present

0x80000000
ERRCODE field
present
4 u32 NODE Node address (echo)
8 u3s2 IX Entry index (echo)
12 u32 SUBIX Entry sub-index
(echo)
16 EXDATA Extra data

The EXDATA structure is the following when the 0x80000000 flag is set in FLAGS:

Offset Type Label Description
+16 u3s2 ERRCODE Error code
+20 STRZ ERRTEXT Error text (#1)

(#1) Present only when 0x40000000 is set in FLAGS.
Otherwise, if the 0x80000000 flags is not set in FLAGS, the EXDATA structure is the

following:

Offset Type Label Description

+16 u32 DTYPE Entry data type[ss)
+20 EXDATA2 Extra data 2

If the 0x100000 is set in DTYPE, the EXDATA2 structure is the following:
Offset Type Label Description

+20 STRZ VALUE Entry actual value

Otherwise the EXDATAZ2 structure is the following:

© 2025 Robox SpA

Messages 111

Offset Type Label Description
+20 <T> VALUE Entry actual value
+28 u32 ADDR Entry address (#1)
<T> DEFVAL Entry default value
(#2)
<T> MINVAL Entry minimum value
(#3)
<T> MAXVAL Entry maximum value
(#4)
STRZ TEXT Entry description (#5)

(#1) Present only when 0x00000001 is set in FLAGS.

(#2) Present only when 0x00000002 is set in FLAGS (offset depends of previous fields
presence).

(#3) Present only when 0x00000004 is set in FLAGS (offset depends of previous fields
presence).

(#4) Present only when 0x00000008 is set in FLAGS (offset depends of previous fields
presence).

(#5) Present only when 0x00000010 is set in FLAGS (offset depends of previous fields
presence).

Data type <T> is determined as following:

e If the (DTYPE & Ox3F) value is 0x18, the type <T> is 164
e If the (DTYPE & 0x3F) value is 0x8, the type <T> is U64
e In all other cases <T> is DBL

On failure, a becNack[ed is received. Specific errors:

NACK code Description Extra data

nackMissingArgs Missing arguments

nacklllegalArgs Illegal arguments U1l6 What illegal:
1=Flags

2=Node address

3=Index/sub-index

4=Data type
nackInterfaceNotFound EtherCAT (CoE) interface not
present
nackInterfaceNotReady EtherCAT (CoE) interface not
running

© 2025 Robox SpA

112

BCC Communication Protocol v 3.10

Write an extended entry to Local interface
Code: AS + 904

Symbolic: bccFbWriteLocalEntryE

This command will write an extended entry to the device Local Interface object dictionary.
Request parameters are the following:

Offset Type Label Description

0 u32 FLAGS Request flags:

0x00000001 Request
the ADDR field

0x00000002 Request
the DEFVAL field

0x00000004 Request
the MINVAL field

0x00000008 Request
the MAXVAL field

0x00000010 Request
the TEXT field

0x40000000 Request
the ERRTEXT field

4 u32 NODE Node address

8 u32 IX Entry index

12 u32 SUBIX Entry sub-index

16 u32 DTYPE Entry data typel[ss
20 <T> VALUE Entry value

Data type <T> is determined as following:

e If the (DTYPE & Ox3F) value is 0x18, the type <T> is 164

e If the (DTYPE & Ox3F) value is 0x8, the type <T> is U64

e If the (DTYPE & 0x100000) value is 0x100000 , the type <T> is STRZ
e In all other cases <T> is DBL

On success, a beccAck[6dl is received with following data:
Offset Type Label Description

0 u32 FLAGS Reply flags:

0x00000001 ADDR
field present

0x00000002 DEFVAL
field present

0x00000004 MINVAL
field present

© 2025 Robox SpA

Messages 113

Offset Type Label Description
0x00000008 MAXVAL
field present

0x00000010 TEXT
field present

0x40000000 ERRTEXT
field present

0x80000000
ERRCODE field
present
4 u32 NODE Node address (echo)
8 u32 IX Entry index (echo)
12 u32 SUBIX Entry sub-index
(echo)
16 EXDATA Extra data

The EXDATA structure is the following when the 0x80000000 flag is set in FLAGS:

Offset Type Label Description
+16 u32 ERRCODE Error code
+20 STRZ ERRTEXT Error text (#1)

(#1) Present only when 0x40000000 is set in FLAGS.
Otherwise, if the 0x80000000 flags is not set in FLAGS, the EXDATA structure is the

following:

Offset Type Label Description

+16 u32 DTYPE Entry data type[es)
+20 EXDATA2 Extra data 2

If the 0x100000 is set in DTYPE, the EXDATA2 structure is the following:
Offset Type Label Description

+20 STRZ VALUE Entry actual value

Otherwise the EXDATAZ2 structure is the following:

Offset Type Label Description
+20 <T> VALUE Entry actual value
+28 u32 ADDR Entry address (#1)
<T> DEFVAL Entry default value
(#2)
<T> MINVAL Entry minimum value
(#3)

© 2025 Robox SpA

114

BCC Communication Protocol v 3.10

Offset Type

<T>

STRZ

Label

MAXVAL

TEXT

(#1) Present only when 0x00000001 is set in FLAGS.
(#2) Present only when 0x00000002 is set in FLAGS (offset depends of previous fields

presence).

Description

Entry maximum value
(#4)

Entry description (#5)

(#3) Present only when 0x00000004 is set in FLAGS (offset depends of previous fields

presence).

(#4) Present only when 0x00000008 is set in FLAGS (offset depends of previous fields

presence).

(#5) Present only when 0x00000010 is set in FLAGS (offset depends of previous fields

presence).

Data type <T> is determined as following:
o If the (DTYPE & Ox3F) value is 0x18, the type <T> is 164
e If the (DTYPE & 0x3F) value is 0x8, the type <T> is U64

e In all other cases <T> is DBL

On failure, a becNack[eh is received. Specific errors:

NACK code
nackMissingArgs

nacklllegalArgs

nackInterfaceNotFound

nackInterfaceNotReady

Write interface information

Description
Missing arguments

Illegal arguments

Local interface not present

Local interface not running

AS + 951

bccFbWritelIF

Extra data

Ul6 What illegal:
1=Flags

2=Node address
3=Index/sub-index

4=Data type

This command will write interface information to the device. Request parameters are the

Code:

Symbolic:

following:

Offset Type
0 u32
4 u32

Label
FLAGS

NODE

Description
Request flags: (none)

Node address

© 2025 Robox SpA

Messages 115

Offset Type Label Description
8 u32 IFTYPE Interface type
identifier| ss

On success, a bccAckld1 is received with following data:

Offset Type Label Description
0 u32 FLAGS Reply flags: (none)
4 u32 NODE Node address (echo)

8 u3s2 IFTYPE Interface type
identifier ssg (echo)

On failure, a beccNack[d is received. Specific errors:

NACK code Description Extra data

nackMissingArgs Missing arguments

nacklllegalArgs Illegal arguments Ul6 What illegal:
1=Flags

2=Node address

3=Interface type

Write NMT command to CANopen Interface
Code: AS + 923

Symbolic: bccFbWriteCanNmt

This command will write the NMT command to the device CANopen Interface. Request
parameters are the following:

Offset Type Label Description

0 u32 FLAGS Request flags:

0x40000000 Request
the ERRTEXT field

4 u32 NODE Node address

8 u32 CMD NMT command:
1=Request Start
2=Request Stop

128=Request to enter
PreOperational

129=Request Reset
node

130=Request Reset
communication

On success, a bccAcklsdl is received with following data:

© 2025 Robox SpA

116

BCC Communication Protocol v 3.10

Offset
0
4

12

Type Label
u32 FLAGS
u32 NODE
u32 PSTATUS
u32 CMD

On failure, a becNacklwedl is received. Specific errors:

NACK code
nackMissingArgs

nacklllegalArgs

nackInterfaceNotFound

nackInterfaceNotReady

Description
Reply flags: (none)

Required node
address

Previous NMT status:
0=Init
1=Reset node

2=Reset
communication

4=Stop
5=0perational

127=PreOperational

NMT command (echo)

Description
Missing arguments

Illegal arguments

CANopen interface not
present

CANopen interface not
running

Write NMT command to Local Interface

Code:

Symbolic:

AS + 903

Extra data

Ul6 What illegal:
1=Flags
2=Node address

3=NMT command

bccFbWriteLocalNmt

This command will write the NMT command to the device Local Interface. Request
parameters are the following:

Offset Type Label
0 u32 FLAGS
4 u32 NODE
8 u32 CMD

Description
Request flags: (none)
Node address

NMT command:

0=Request Init

© 2025 Robox SpA

Messages 117

Offset

Type

Label

On success, a bccAck[6d is received with following data:

Offset Type
0 u32
4 u32
8 u32
12 u32

Label
FLAGS
NODE

PSTATUS

CMD

On failure, a becNack[eh is received. Specific errors:

NACK code
nackMissingArgs

nacklllegalArgs

nackInterfaceNotFound

nackInterfaceNotReady

Field bus handling

Description
Missing arguments

Illegal arguments

Local interface not present

Local interface not running

Description

1=Request
PreOperational

2=Request
Operational

Description
Reply flags: (none)
Node address (echo)

Previous NMT status:
0=Init
1=PreOperational

2=0perational

NMT command (echo)

Extra data

Ul6 What illegal:
1=Flags

2=Node address
3=NMT Command

These messages are used to handle the field bus (trough the operating system) of the

connected device.

CANopen interface:

COE interface:

e bccCanObjRead[2%), read a CANopen object « bccCoeObjRead[=8), read a COE object

e bccCanObjWrite[+3), write a CANopen objecte bccCoeObjWrite[13)), write a COE object

e bccCanNmtRead[13d), read one or more

CANopen NMT

e bccCanNmtWrite[138), write one or more

CANopen NMT

e bccCanEmcyRead[24), read a CANopen EMCY

message

EtherCAT interface:

e bccEcatNmtRead[2), read a EtherCAT NMT
e bccEcatNmtWrite[133), write a EhterCAT NMT

© 2025 Robox SpA

118 BCC Communication Protocol v 3.10

e bccCanEmcyinfol+d), query CANopen EMCY
message information

e bccCanRbxChDiag[+d), query Robox
CANopen channel diagnostic

e bccCanRbxWsDiag[+2h, query Robox
CANopen workstation diagnostic

e bccCanPdoRead[+29), read element from
Tx/Rx CANopen PDO

e bccCanC402Infol+48), query CANopen C402
information

Query CANopen C402 information
Code: AS + 759

Symbolic: bccCanC402Info

This command will query CANopen C402 information. Request has the following parameters:

Offset Type Label Description

0 u32 FLAGS Request flags: (none)

4 ulé6 WSID Workstation ID (0=all)
(#1)

6 ulé6 NWS No. of workstation
(max 41)

(#1) Workstation ID is also know (or defined) as Robox ID.

On success, a beccAck[6l is received with the following data:

Offset Type Label Description

0 uie NWS No. of WSDAT
structures (max 23)

2 WSDAT DATA1 Information for 1st
workstation

8 WSDAT DATA2 Information for 2nd
workstation

WPDAT DATA{NWS} PDO data for Nth
workstation

Each WPDAT structure have the following data:

Offset Type Label Description
+0 ulé6 WSID Workstation ID
+2 ulé6 STSW Status word

© 2025 Robox SpA

Messages 119

Offset Type Label Description

+4 uilé6 CTLW Control word

On failure, a beccNackledl is received. Specific errors:

NACK code Description Extra data
nacklllegalArgs Illegal parameters U16 What illegal:
1=Flags

2=Workstation ID

3=No. of workstation

Query CANopen EMCY message information
Code: AS + 755

Symbolic: bccCanEmcyInfo

This command will query information for a CANopen EMCY (emergency) message. Request
has the following parameters:

Offset Type Label Description

0 u32 FLAGS Request flags:
0x00000001 Enable
text

4 ule ERRCOD Error code

6 u8 ERRREG Error register

7 U8[5] MSDATA Manufacturer specific
data

12 uleé DTYPE Drive type:
0=Generic

5=Parker-SBC (HID 1)
6=Parker-SBC (SLVD

1)
10=Sinamics (CanSin
1)

On success, a becAck[63l is received with the following data:

Offset Type Label Description

0 STRZ TEXT Emergency text

On failure, a beccNack[h is received. Specific errors:

© 2025 Robox SpA

120 BCC Communication Protocol v 3.10

NACK code

nacklIllegalArgs

Query Robox CANopen channel diagnostic

Code:

Symbolic:

Description

Illegal parameters

Extra data

Ul6 What illegal:

1=Flags

2=Error code

3=Error register
4=Manufacturer specific data
5=Drive type

bccCanRbxChDiag

This command will query diagnostic information about one or more Robox CANopen channel

(DS 301). Request has the following parameters:

Offset
0
4

6

On success, a beccAck[6h is received with the following data:

Offset
0

12

Each CHDAT structure have the following data:

Offset
+0

+2

DATA{NCH}

Description
Request flags: (none)
Channel ID

No. of channel (max
24)

Description

No. of CHDAT
structures (max 24)

Data for 1st channel

Data for 2nd channel

Data for Nth channel

Description
Channel ID

Channel status:

0x00000001
Successful boot-up
operation

© 2025 Robox SpA

Messages 121

Offset Type Label Description

0x00000002
Successful main
software load

0x00000004
Successful
configuration

0x80000000 Not
present channel

+6 u32 DIAG Channel diagnostic:

0x00000001 Fault in
Can Handler 1

0x00000002 Fault in
Can Handler 2

0x00000004 Fault in
Can Handler 3

0x00010000
Watchdog fault
(immediate)

0x00020000
Watchdog fault
(filtered)

0x00040000
Handshake not ready

0x00080000 Global
communication fault

0x00100000 PLL lost -
no synch signal is

sent
On failure, a beccNackl+d is received. Specific errors:
NACK code Description Extra data
nacklllegalArgs Illegal parameters U16 What illegal:
1=Flags
2=Channel ID

3=No. of channel

Query Robox CANopen workstation diagnostic
Code: AS + 757

Symbolic: bccCanRbxWsDiag

This command will query diagnostic information about one or more Robox CANopen
workstation . Request has the following parameters:

© 2025 Robox SpA

122 BCC Communication Protocol v 3.10

Offset Type Label Description

0 u32 FLAGS Request flags: (none)

4 ul6 WSID Workstation ID (0=all)
(#1)

6 ule NWS No. of workstation
(max 41)

(#1) Workstation ID is also know (or defined) as Robox ID.

On success, a bccAck[64l is received with the following data:
Offset Type Label Description

0 ule NWS No. of WSDAT
structures (max 41)

2 W SDAT DATA1 Data for 1st
workstation

8 WSDAT DATA2 Data for 2nd
workstation

W SDAT DATA{NWS} Data for Nth
workstation

Each WSDAT structure have the following data:
Offset Type Label Description

+0 uié6 WSID Workstation ID (#1)

+2 u32 DIAG Workstation
diagnostic:

0x00000001 Missing
Rx PDO 1

0x00000002 Missing
Rx PDO 2

0x00000004 Missing
Rx PDO 3

0x00000008 Missing
Rx PDO 4

0x00000010 Before
time Rx PDO 1

0x00000020 Before
time Rx PDO 2

0x00000040 Before
time Rx PDO 3

0x00000080 Before
time Rx PDO 4

© 2025 Robox SpA

Messages 123

Offset

Type

Label

Description

0x00000100 Missing
mandatory
workstation

0x00000200 Missing
workstation

0x00000400 Last
request RTR failed

0x00000800
Workstation presence
imposed

0x00001000
Reconfiguring
workstation

0x00002000 Error
during reconfiguration

0x00010000
Emergency message
present

0x00020000 No
communication (in
operational mode)

0x00040000
Workstation kind :
mandatory

0x00080000
Workstation kind :
reloadable on
connection

0x00100000
Configuration
satisfactory done

0x00200000
Workstation not
present on first
configuration

0x00400000 Problem
occurs during
configuration on SDO
command

0x00800000 Problem
occurs during
configuration on NMT
command

0x01000000
Configuration done

0x40000000
Workstation not
started

© 2025 Robox SpA

124 BCC Communication Protocol v 3.10

Offset Type Label Description

0x80000000
Undefined
workstation
(#1) Workstation ID is also know (or defined) as Robox ID.

On failure, a becNackled is received. Specific errors:

NACK code Description Extra data
nacklllegalArgs Illegal parameters Ul6 What illegal:
1=Flags

2=Workstation ID

3=No. of workstation

Read a CANopen EMCY message

Code: AS + 754

Symbolic: bccCanEmcyRead

This command will read a CANopen EMCY (emergency) message. Request has the following

parameters:

Offset Type Label Description

0 u32 FLAGS Request flags:
0x00000001 Enable
text

4 ule WSID Workstation ID (#1)

(#1) Workstation ID is also know (or defined) as Robox ID.

On success, a bccAckl 6 is received with the following data:

Offset Type Label Description

0 uie ERRCOD Error code

2 us8 ERRREG Error register

3 U8[5] MSDATA Manufacturer specific
data

8 STRZ TEXT Emergency text (if
enabled)

On failure, a becNack[+d is received. Specific errors:

NACK code Description Extra data

nacklllegalArgs Illegal parameters U16 What illegal:

1=Flags

© 2025 Robox SpA

Messages 125

NACK code Description

Read a CANopen object

Extra data

2=Workstation ID

Code: AS + 750

Symbolic: bccCanObjRead

This command will read the specified CANopen object. Request has the following

parameters:

Offset Type Label Description

0 u32 FLAGS Request flags:
0x00000001 Enable
text on error

4 ulé6 WSID Workstation ID (#1)

6 ule OBJIX Object index

8 ulé6 SUBIX Object sub-index

10 I16 TYPE Data type:

-1=As signed data
+1=As unsigned data
5=As float

Note (#1): Workstation ID is also know (or defined) as Robox ID.

On success, a bccAck[6 is received with the following data:

Offset Type Label

0 u32 FLAGS

4 DBL DATA

12 u32 ERRCOD
16 STRZ ERRTXT

On failure, a becNack[eh is received. Specific errors:

NACK code Description

nacklllegalArgs Illegal parameters

Description

Reply flags:

0x00000001 Error on
SDO

Object data
Error code (if error)

Error text (if error)

Extra data

Ul6 What illegal:
1=Flags
2=Workstation ID
3=0bject index

© 2025 Robox SpA

126 BCC Communication Protocol v 3.10

NACK code Description Extra data

4=0bject sub-index

5=Data type
Read a COE object
Code: AS + 760
Symbolic: bccCoeObjRead

This command will read the specified COE object. Request has the following parameters:

Offset Type Label Description

0 u32 FLAGS Request flags:
0x1 Enable text on
error

4 ulé6 WSID Workstation ID (#1)

6 ule OBJIX Object index

8 ulé6 SUBIX Object sub-index

10 ulé6 DTYPE Data type (container
data):

1 = Boolean (U8)
2 = Integer 8 (I8)
3 = Integer 16 (116)
4 = Integer 32 (132)
5 = Unsigned 8 (U8)

6 = Unsigned 16
(U1e)

7 = Unsigned 32
(U32)

8 = Real 32 (FLT)

9 = Visible String
(STRZ)

10= Octet String (...)

11 = Unicode String
(...)

12 = Time of Day (...)
13 = Time Difference

(...)

15 = Domain (...)

16 = Integer 24 (132)
17 = Real 64 (DBL)

© 2025 Robox SpA

Messages 127

Offset Type Label

(#1) Workstation ID is also know (or defined) as Robox ID.

On success, a beccAck[6l is received with the following data:

Offset Type Label

0 u32 FLAGS

In case of FLAGS wth 0x1 value, data is the following:

Offset Type Label
4 u32 ERRCOD
8 STRZ ERRTXT

In case of FLAGS with no Ox1 value, data is the following:

Offset Type Label
4 us DSIZE
5 us =

6 UB[DSIZE] DATA

On failure, a bccNack[+R is received. Specific errors:

Description

18 = Integer 40 (164)
19 = Integer 48 (164)
20 = Integer 56 (164)
21 = Integer 64 (164)

22 = Unsigned 24
(U32)

24 = Unsigned 40
(ue4)

25 = Unsigned 48
(U64)

26 = Unsigned 56
(ue4)

27 = Unsigned 64
(U64)

30 = Byte (U8)

45 = BITARRS (U8)
46 = BITARR16 (U16)
47 = BITARR32 (U32)

Description

Reply flags:

0x00000001 Error on
SDO

Description
Error code

Error text

Description
Size of data
(reserved)

Data

© 2025 Robox SpA

128 BCC Communication Protocol v 3.10

NACK code Description Extra data
nacklllegalArgs Illegal parameters U1l6 What illegal:
1=Flags

2=Workstation ID
3=0bject index
4=0bject sub-index

5=Data type
Read an EtherCAT NMT
Code: AS + 762
Symbolic: bccEcatNmtRead

This command will read one or more EtherCAT NMT. Request has the following parameters:

Offset Type Label Description

0 u32 FLAGS Request flags: (none)

4 ul6 WSID Workstation ID (0=all)
(#1)

6 ule NWS No. of workstation

(max 63)(#2)

(#1) Workstation ID is also know (or defined) as Robox ID.
(#2) In case of WSID = 0 (all), che NWS field is not considered

On success, a bccAckl 6l is received with the following data:

Offset Type Label Description

0 ulé6 NWS No. of NMT structures
(max 63)

2 NMT DATA1 NMT data for 1st

workstation

6 NMT DATA2 NMT data for 2nd
workstation

NMT DATA{NWS} NMT data for Nth
workstation

Each NMT structure have the following data:

Offset Type Label Description
+0 uie WSID Workstation ID (#1)
+2 us8 STSC Status code:

© 2025 Robox SpA

Messages 129

Offset Type Label Description
0=Not present
1=Init
2=Pre Operational
3=Boot
4=Safe Operational

8=0perational

+3 u8 - (reserved)

(#1) Workstation ID is also know (or defined) as Robox ID.

On failure, a beccNack[d is received. Specific errors:

NACK code Description Extra data
nacklllegalArgs Illegal parameters U16 What illegal:
1=Flags

2=Workstation ID

3=No. of workstation

Read data from Tx'Rx CANopen PDO
Code: AS + 758

Symbolic: bccCanPdoRead

This command will read data from a Tx/Rx CANopen PDO. Request has the following

parameters:

Offset Type Label Description

0 u32 FLAGS Request flags:
0x00000001 read
from TXPDO
0x00000002 read
from RxPDO

4 ule WSID Workstation ID (0=all)
(#1)

6 ulé6 N No. of workstation
(max 41)

8 uie PDO PDO index

10 uie ITEM PDO item index

(#1) Workstation ID is also know (or defined) as Robox ID.

On success, a beccAck[6dl is received with the following data:

© 2025 Robox SpA

130 BCC Communication Protocol v 3.10

Offset Type Label Description

0 uie N No. of WSDAT
structures (max 23)

2 W SDAT DATA1 PDO data for 1st
workstation

12 W SDAT DATA2 PDO data for 2nd
workstation

W SDAT DATA{N} PDO data for Nth
workstation

Each WSDAT structure have the following data:

Offset Type Label Description
+0 ulé6 WSID Workstation ID
+2 DBL DATA PDO data

On failure, a beccNack[dl is received. Specific errors:

NACK code Description Extra data
nacklllegalArgs Illegal parameters Ul6 What illegal:
1=Flags

2=Workstation ID
3=No. of workstation
4=PDO index

5=PDO item index

Read one or more CANopen NMT
Code: AS + 752

Symbolic: bccCanNmtRead

This command will read one or more CANopen NMT. Request has the following parameters:

Offset Type Label Description

0 u32 FLAGS Request flags: (none)

4 ulé6 WSID Workstation ID (0=all)
(#1)

6 uie N No. of workstation
(max 63)

(#1) Workstation ID is also know (or defined) as Robox ID.

On success, a beccAck[sl is received with the following data:

© 2025 Robox SpA

Messages 131

Offset Type
0 uie
2 NMT
6 NMT

NMT

Each NMT structure have the following data:

Offset Type
+0 uile
+2 us
+3 us

(#1) Workstation ID is also know (or defined) as Robox ID.

Label

DATA1

DATA2

DATA{N}

Label
WSID

STSC

STSF

On failure, a beccNacklwdl is received. Specific errors:

NACK code Description

nacklllegalArgs Illegal parameters

Description

No. of NMT structures
(max 63)

NMT data for 1st
workstation

NMT data for 2nd
workstation

NMT data for Nth
workstation

Description
Workstation ID (#1)

Status code:
4=Stop
5=0perational

127=Preoperational

Status flags:
0x01 Not present ws

0x02 Not physically
present ws (even if
forced presence)

0x04 Last RTR for
APDO failed

0x08 Ws forced
presence

0x10 Configuration in
progress

0x20 Configuration
aborted

0x80 Ws sent PDO
shorter than
programmed

Extra data

U1l6 What illegal:
1=Flags
2=Workstation ID

© 2025 Robox SpA

132

BCC Communication Protocol v 3.10

NACK code Description

Write a CANopen object

Extra data

3=No. of workstation

Code: AS + 751
Symbolic: bccCanObjWrite
This command will write the specified CANopen object. Request has the following
parameters:
Offset Type Label Description
0 u32 FLAGS Request flags:
0x00000001 Enable
text on error
4 ulé6 WSID Workstation ID (#1)
6 ule OBJIX Object index
8 ulé6 SUBIX Object sub-index
10 I16 TYPE Data type:
-1=I8
+1=U8
-2=I16
+2=U16
-3=I124
+3=U24
-4=132
+4=U32
5=float
12 DBL DATA Object data

(#1) Workstation ID is also know (or defined) as Robox ID.

On success, a beccAck[6h is received with the following data:

Offset Type Label

0 u32 FLAGS

4 u32 ERRCOD
8 STRZ ERRTXT

On failure, a beccNack[#h is received. Specific errors:

Description

Reply flags:

0x00000001 Error on
SDO

Error code (if error)

Error text (if error)

© 2025 Robox SpA

Messages 133

NACK code Description Extra data
nacklllegalArgs Illegal parameters U1l6 What illegal:
1=Flags

2=Workstation ID
3=0bject index
4=0bject sub-index

5=Data type
Write a COE object
Code: AS + 761
Symbolic: bccCoeObjWrite

This command will write the specified COE object. Request has the following parameters:

Offset Type Label Description

0 u32 FLAGS Request flags:
0x1 Enable text on
error

4 ulé6 WSID Workstation ID (#1)

6 ule OBJIX Object index

8 ulé6 SUBIX Object sub-index

10 ulé6 DTYPE Data type (container
data):

1=Boolean (U8)
2=Integer 8 (I8)
3=Integer 16 (I16)
4=Integer 32 (132)
5=Unsigned 8 (U8)
6=Unsigned 16 (U16)
7=Unsigned 32 (U32)
8=Real 32 (FLT)

9=Visible String
(STRZ)

10=0Octet String (...)

11=Unicode String
(..)

12=Time of Day (...)

13=Time Difference

(..)

© 2025 Robox SpA

134

BCC Communication Protocol v 3.10

Offset Type Label
12 us DSIZE
13 us -

14 US[DSIZE] DATA

(#1) Workstation ID is also know (or defined) as Robox ID.

On success, a beccAck[6h is received with the following data:

Offset Type Label
0 u32 FLAGS

In case of FLAGS wth 0x1 value, data is the following:

Offset Type Label
4 u32 ERRCOD
8 STRZ ERRTXT

On failure, a bccNack[R is received. Specific errors:

Description

15=Domain (...)
16=Integer 24 (132)
17=Real 64 (DBL)
18=Integer 40 (164)
19=Integer 48 (164)
20=Integer 56 (164)
21=Integer 64 (164)

22=Unsigned 24
(U32)

24=Unsigned 40
(Ue4)

25=Unsigned 48
(ue4d)

26=Unsigned 56
(Ue4)

27=Unsigned 64
(ue4d)

30=Byte (U8)
45=BITARRS8 (U8)
46=BITARR16 (U16)
47=BITARR32 (U32)

Size of data
(reserved)

Data

Description

Reply flags:

0x00000001 Error on
SDO

Description
Error code

Error text

© 2025 Robox SpA

Messages 135

NACK code

nacklIllegalArgs

Write an EtherCAT NMT

Code:

Symbolic:

Description

Illegal parameters

AS + 763

Extra data

Ul6 What illegal:
1=Flags
2=Workstation ID
3=0bject index
4=0bject sub-index
5=Data type
6=Data size
7=Data

bccEcatNmtWrite

This command will write one or more EtherCAT NMT. Request has the following parameters:

Offset
0

4

9

(#1) Workstation ID is also know (or defined) as Robox ID.

Type
u32
uleé

ule

us

us

Label
FLAGS

WSID

ETHID

STSC

On success, a becAck[63 is received with no data.

On failure, a becNack[ed is received. Specific errors:

NACK code

nacklllegalArgs

Description

Illegal parameters

Description
Request flags: (none)

Workstation ID (0=all)
(#1)

Ethernet ID (O=dont
care)

Status code:

1=Init

2=Pre Operational
3=Boot

4=Safe Operational

8=0perational

(reserved)

Extra data

Ul6 What illegal:
1=Flags
2=Workstation ID
3=Ethernet ID

© 2025 Robox SpA

136 BCC Communication Protocol v 3.10

NACK code Description Extra data

4=Status code

Write one or more CANopen NMT
Code: AS + 753

Symbolic: bccCanNmtWrite

This command will write one or more CANopen NMT. Request has the following parameters:

Offset Type Label
0 u32 FLAGS
4 uie WSID
6 uie N

8 uie CMD

(#1) Workstation ID is also know (or defined) as Robox ID.

On success, a becAck[63 is received with no data.

On failure, a beccNack[eh is received. Specific errors:

Description
Request flags: (none)

Workstation ID (0=all)
(#1)

No. of workstation

NMT command code:
1=Start
2=Stop

128=Enter
preoperational

129=Reset node

130=Reset
communication

NACK code Description Extra data
nacklllegalArgs Illegal parameters U16 What illegal:
1=Flags

2=Workstation ID

3=No. of workstation

4=NMT command code

Flash handling

These messages are used for handling flashes of the connected device.

Flash handling: File handling:
e bccFlashinfol+s3), query flash information bccFlashFileLoad[+42), load a file to a flash
folder

© 2025 Robox SpA

Messages 137

e bccFlashinfoByFolder[+s3), query flash bccFlashFileSavelisd), save a file from a flash
information by folder folder

e bccFlashList[s), query list of flashes bccFlashFileDelete[140), delete flash files

e bccFlashFormatld), format a flash becFlashFileRenamel+s3), rename a flash file

« becFlashinit/), define and initialize flashes DccFlashFileInfoltsd) query flash file
information

e bccFlashDisk[48), handle disk flashes

e bccFlashDir[+4d), query flash folder content

e bccFlashSetAttributes[ed), set attributes in

Folder handling:
bccFlashTreelss), query flash folder tree

flash

becFlashFolderCreate[sh, create a flash
folder
bccFlashFolderDelete[d), delete a flash
folder
bccFlashFolderInfo[1s8), query flash folder
information

Create a flash folder

Code: AS + 113

Symbolic: bccFlashFolderCreate

This command will request to create a new flash folder with the specified path:
Offset Type Label Description

0 u32 FLAGS Operating flags:

0x00000001 Create
recursively (all PATH
levels)

0x00000002 Make the
folder (#1)

4 u32 ATTRIB Flash folder
attributes:

0x00000020 Hidden
folder

0x00000040 Read
only folder

8 STRZ PATH Flash folder absolute
path (0-termined,
using / as folder
separator)

(#1) The make flag will tell the command to be successfully even if the folder already exist.
On success, a becAck[63 is received with no data.

On failure, a becNack[h is received. Specific errors:

© 2025 Robox SpA

138 BCC Communication Protocol v 3.10

NACK code Description Extra data
nacklllegalArgs Illegal params U1l6 What illegal:
1=Flags

2=Attributes
3=Folder path

nackFolderNotExist Folder path (full/partially) not

(nackNotFound) e

nackReadOnly The flash is read-only and the
new folder cannot be
created.

nackFolderExist The folder path already exist

(and no make flag specified)

Create and initialize flashes
Code: AS + 112

Symbolic: bccFlashInit

This command will request to create, define and initialize flashes for the connected device.
Request parameters are the following:

Offset Type Label Description

0 u32 FLAGS Operating flags:

0x00000001 Query
only effective
configuration

4 us NFLA Number of required
flashes (min 1).
5 FLAO Flash 0 request
FLA1 Flash 1 request

Where FLAX contains the following parameters:

Offset Type Label Description

+0 usg[4] NAME Flash name (3 + 0
terminator)

+4 u32 SIZE Required size [kbyte]

Notes:

e for standard flashes the name is /Fx, where x is @ for system flash, and from A to Z for
users defined flashes

« for compact flashes use the bccFlashDisk[161 command.

© 2025 Robox SpA

Messages 139

On success, a bccAck[64l is received with the following data:

Offset Type Label Description
0 us NFL Number of effective
flashes
1 FLAO Flash 0 effective data
FLAO Flash 1 effective data

Where FLAX contains the following parameters:
Offset Type Label Description

+0 U8x4 NAME Flash name (3 + 0
terminator)

+4 u32 SIZE Effective size [kbyte]

On failure, a bccNack[+R is received. Specific errors:

NACK code Description Extra data
nacklllegalArgs Illegal parameters U1l6 What illegal:
1=Flags
2=No. of flashes
3=Flashes

100+x=Flash x name

200+x=Flash x size

nackReadOnly The flash (or the device itself)
is read-only and cannot be
initialized.

After the bccAckled is received, the initialization operation will begin as soon as possible:

when operation normally end you will receive a bccCompleted[+h message (with no data). If
operation is aborted from the device, you will receive a bccAborted/res).

Notes:
e Operation cannot be aborted by command, but only from remote.
e Both bccCompleted[and becAborted[+e3) will have PID as request command PID.

During the operation you can optionally request the operation status by sending a
bccCheckl81 message (with no parameters): as DCH value you must use the SCH value
from first bccAck[16h message. The becAckleh answer for a becCheck[168), will contain following

data:

Offset Type Label Description

0 us8 PERC Operation progress
(%)

1 STRZ MSG Optional status
message

© 2025 Robox SpA

140

BCC Communication Protocol v 3.10

Delete a flash folder

Code:

Symbolic:

AS + 114

bccFlashFolderDelete

This command will request to delete an existing flash folder (or a hierarchy of folders in case

of recursive flag):

Offset
0

Type
u32

STRZ

Label

FLAGS

PATH

Description

Operating flags:

0x00000001 Delete
recursively (all PATH
levels)

0x00000002 Prune
the folder content
(#1)

Flash folder absolute
path (0O-termined,
using / as folder
separator)

(#1) The prune flag will request to remove the entire content of the folder (or any interested

folder in case of recursive flag).

On success, a bccAck[6d) is received with no data.

On failure, a becNack[d is received. Specific errors:

NACK code

nacklllegalArgs

nackFolderNotExist
(nackNotFound)

nackReadOnly

nackNotEmpty

Description

Illegal argument

Folder path not found

The folder (or the flash itself)
is read-only and cannot be

deleted.

The folder is not empty (and
no prune flag specified) and

cannot be deleted.

Delete files from a flash folder

Code:

Symbolic:

AS + 103

bccFlashFileDelete

Extra data

Ul6 What illegal:
1=Flags
2=Folder path

© 2025 Robox SpA

Messages 141

This command will delete one or more files from a flash folder on the connected device.
Request parameters are the following:

Offset Type Label Description

0 u32 FLAGS Operating flags:
0x00000001 Delete
recursive

0x00000002 Delete
empty folders

4 STRZ FILEMASK Filename mask (with
jollies)

On success, a bccAckl sl is received with the following data:
Offset Type Label Description

0 ule6 COUNT No. of deleted files

On failure, a becNack[eh is received. Specific errors:

NACK code Description Extra data
nacklllegalArgs Illegal parameters U1l6 Whatillegal:
1=Folder
2=Filename
3=Flags
nackReadOnly One or more file (or the flash
or the device itself) is read-
only and cannot be deleted.
Format a flash
Code: AS + 108
Symbolic: bccFlashFormat

This command will begin a format (erase) a flash of the connected device. Request
parameters are the following:

Offset Type Label Description
0 u32 FLAGS Operating flags:
4 uie DEVID Flash device ID

On failure, a bccNack[R is received. Specific errors:

NACK code Description Extra data
nacklIllegalArgs Illegal parameters Ul6 What flags:
1=Flags

© 2025 Robox SpA

142

BCC Communication Protocol v 3.10

NACK code Description Extra data
2=Flash device ID

nackReadOnly The flash (or the device itself)
is read-only and cannot be
erased.

On success, a bccAckl6d) is received with no data. The format operation will begin as soon
as possible: when operation normally end you will receive a bccCompleted[+7 message
(with no data).

If operation is aborted from the device, you will receive a bccAborted[65,

Notes:

e Operation cannot be aborted by command, but only from remote.

e Both bccCompleted[71 and becAbortedles) will have PID as request command PID.

During the operation you can optionally request the operation status by sending a
bccCheckl163l message (with no parameters): as DCH value you must use the SCH value
from first bccAckleh message. It's becAcklh answer will contain following data:

Offset Type Label Description

0 us8 PERC Operation progress
(%)

1 STRZ MSG Optional status
message

Load a file to a flash folder

Code: AS + 100

Symbolic: bccFlashFileLoad

This command will load a generic file from the local disk to a flash folder of the connected
device. Request parameters are the following:

Offset Type Label Description
0 u32 FLAGS Operating flags:
0x00000001

Overwrite target file

0x00000002 Recover
load, if needed

0x00000004 No BIF16
handling

0x00000008 Special
load as BOOT (#1)

0x00000010 Special
load as BIOS (#1)

0x00000020 Special
load as MAIN (#1)

© 2025 Robox SpA

Messages 143

Offset

12

16

17

18

19
20

21

22

Type

u32

u32

u32

us
us

us

us
us

us

u32

Label

FILESIZE

ALLOADDR

STARTADDR

HH

MM

SS

DD

MO

ATTR

Description

0x00000040 Special
load as CFG (#1)

0x00000080
(reserved)

0x00000100
(reserved)

Effective file length
[bytes]

Allocation address
(only BIF16)

Start address (only
BIF16)

Time (hour) of the file

Time (minute) of the
file

Time (second) of the
file
Date (day) of the file

Date (month) of the
file

Date (year - 2000) of
the file

Attributes:

0x00000002
Reserved file

0x00000004 System
file

0x00000020 Hidden
file

0x00000040 Read-
only file

0xFO000000 File type
mask:

- 0x0 Generic

- 0x2 OS standard

- 0x3 OS test

- 0x4 OS standard flat

- 0x5 Old language
(without 0S)

- 0x6 FIFO (queue)

© 2025 Robox SpA

144

BCC Communication Protocol v 3.10

Offset Type

26 STRZ

(#1) Special load flags are all exclusive.

Notes:

Label

FILENAME

Description

Filename

e to load a file in a specific folder, without specifying a new filename, you need to specify
the final / character: /FOLDER is the folder itself and will be not accepted (illegal

arguments) while the correct target filename is /FOLDER/.

On failure, a bccNackl+eh is received. Specific errors

NACK code

nackOpenError
nackMemoryFull
nackWriteError

nackDataOverflow
required

nackDataUnderflow
required

nacklllegalArgs

nackFileExist
specified
nacklllegalFile
loading

nackReadOnly

Description

Error opening flash file
Out of memory (or flash full)
Error writing flash file

Received more data than

Received less data than

Illegal parameters

The flash file exist and
overwrite flags has not been

The file is illegal or not
recognized for special type

The existing file (or the flash
itself) file is read-only and
cannot be

created/overwritten.

On success, a beccAck[6h is received with following data:

Offset Type

0 u32

Label

OFFSET

Extra data

U1l6 What illegal:
1=Folder
2=Filename
3=File size
4=Flags

5=Alloc address
6=Start address
7=Date/time
8=Attribute

Description

Starting load offset

© 2025 Robox SpA

Messages 145

Offset Type Label Description

4 ule CRC16 CRC16 of file portion
from O to (OFFSET-1)

6 us BSIZE Required data size
(0=default), excluding
leading U32 offset
data.

NOTE: the SCH value of this bccAck will be the DCH for all subsequent commands/message
for this data transfer.

At this time the device will wait a for a bccCheck[+68) command to confirm operation and
effective start offset. If OFFSET is greater than zero, the file CRC16 should be verified for
the partial file from offset 0 to (OFFSET-1): if match, we are loading the same file and load
can be recovered: otherwise, we well restart from offset 0.

The bccCheckl16) command data is the following:
Offset Type Label Description

0 u32 FLAGS Operating flags:

0x00000001 Remove
temporary files

4 u32 OFFSET Effective offset to be
used

On failure, a beccNackl sl is received and the operation is aborted:
On success, a beccAck[edl is received and the transfer process can begin.

The device will send you periodically a becIBlock[+e$) message, indicating how many data
packet you can send to the device itself: after you transmit the required packet (or less i
transmitting a bccEndDatal+es)), you will receive a new bcclBlockl1es).

The beclBlock[6h has the following data:

Offset Type Label Description

0 us COUNT N. of binary packet to
send

Notes:

« If you don't receive the bcclBlock[+edl after an amount of time, you can decide to abort the
transfer, using the bccAbort[3) command.

e On slower communication lines use 1 as COUNT value; on standard RS232 use 3 as
COUNT value.

File raw content (data) will be send with the bccDatal 65 message (for last packet use
bccEndDatal+ed) to indicate end of data), with the following format:

Offset Type Label Description

0 u32 OFFSET Data offset

4 B[251] DATA Binary data to send
Notes:

© 2025 Robox SpA

146

BCC Communication Protocol v 3.10

e bccDatal 63 (or bccEndDatal+e8)) messages will begin with pid = 0 and will be incremented
by 1 at each message.

o DATA size is 251 (or BSIZE if specified on first request bccAck[+4)) for each bccDatal163)
message but could be less for bccEndDatal+5 message.

e The data transfer could be aborted at any time with a bccAbort[3) command.
« If required file is empty, send directly bccNoDatal6dl message and wait for end of transfer.

After you send the bccEndDatal+e) (or bccNoDatal+3)) message you should wait the
bccCompleted[+6h message that report what the device has received, with the following
format:

Offset Type Label Description
0 u32 SIZE Total file size [bytes]
4 u32 COUNT No. of total binary

packet received

Notes:

e If this message is not received in an amount of time, you can consider the transfer
aborted (not confirmed). If the remote device need more time in order to complete the
operation, it can periodically send the bccWait[+6A message, until the operation completes.

» Some BCC/31 implementation have limit on the total delay time for bccWait[+6 messages:
when the limit is reached, the operation will expire.

e The bccCompleted[n indicate that also all pending operations (for examples reload in
memory or restarting) has been successfully completed.

At any time the device can decide to abort the transfer (not when you already are in abort
condition). In this case you will receive the notification via the bccAborted[te3) message.

Manage flash volumes
Code: AS + 117

Symbolic: bccFlashDisk

This command will manage flash volumes (for special devices, like compact flashes) for the
connected device. Request parameters are the following:

Offset Type Label Description

0 u32 FLAGS Operating flags:
(none)

4 ule6 CMD Command:

1=Create a new flash

2=Delete an existing
flash

3=Clear the physical

device, by deleting all
contained flashes (or
partitions)

© 2025 Robox SpA

Messages 147

Offset Type Label
6 u8[32] DATA
38 STRZ NAME

On success, a bccAck[6h is received with the following data:
Offset Type Label
0 U8[32] DATA

On failure, a beccNack(4l is received. Specific errors:

NACK code Description

nacklllegalArgs Illegal argument

nackReadOnly The flash (or the device itself)
is read-only and cannot be
writtten.

nackUnformattedDevice The flash (or the device itself)

is not correctly formatted.

Description

4=Backup an existing
flash

5=Restore an existing
flash

Command specific
data

Flash name (0-
termined) or physical
device name.

Description

Command specific
reply data

Extra data

Ul6 What illegal:
1=Flags
2=Command

3=Flash/device name

For command 1 (Create a new flash) request data is the following:

Offset Type Label
+0 u32 FLAGS
+4 u32 SIZE

Description

Command flags:

0x00000001 Query
only effective
configuration

0x00000002
Overwrite existing
flash

Required flash size
[kbyte]

For command 1 (Create a new flash) reply data is the following:

© 2025 Robox SpA

148

BCC Communication Protocol v 3.10

Offset Type Label Description
+0 u32 SIZE Effective flash size
[kbyte]

After the bccAckled is received, the initialization operation will begin as soon as possible:
when operation normally end you will receive a bccCompleted[+ message (with no data). If
operation is aborted from the device, you will receive a bccAborted /).

Notes:
e Operation cannot be aborted by command, but only from remote.
e Both bccCompleted[71 and becAbortedl+es) will have PID as request command PID.

During the operation you can optionally request the operation status by sending a
bccCheckl163l message (with no parameters): as DCH value you must use the SCH value
from first bccAck[16h message. The becAcklted answer for a becCheck[+68), will contain following
data:

Offset Type Label Description

0 us8 PERC Operation progress
(%)

1 STRZ MSG Optional status
message

Query contents from a flash folder
Code: AS + 102

Symbolic: bccFlashDir

This command will collect information and content of a flash folder of the connected device:
this is a standard download transfer sequencem.

REQDATA structure is the following:

Offset Type Label Description

0 u32 FLAGS Operating flags:

0x00000001 Absolute
paths

0x00000002
Recursive

0x00000004 List
folders

0x00000008 List files

0x00000030 Mask for
date/time type:

- 0x0 (default)
- 0x1 Creation

- 0x2 Last
modification

© 2025 Robox SpA

Messages 149

Offset Type Label Description

- 0x3 Last access

0x00000040 Fully
qualified paths
(implies absolute
paths flag)

0x00000080 List
hidden files/folders

0x00000100
Dereference symbolic
links (#1)

4 STRZ FILEMASK Folder and/or
filename mask (with
jollies)

Note (#1): when showing file information for a symbolic link, show information for the file the
link references rather than for the link itself.

If initial request fails, bccNack[+ed) is received. Specific errors

NACK code Description Extra data

nacklllegalArgs Illegal parameters U1l6 What illegal:
1=Folder
2=Filename
3=Flags

ITEMDATA structure is the following:

Offset Type Label Description

0 us HH Time (hour) of the
item

1 us MM Time (minute) of the
item

2 us8 SS Time (second) of the
item

3 us DD Date (day) of the item

4 us MO Data (month) of the
item

5 us8 YY Data (year - 2000) of
the item

6 u32 ATTRIB Attributes:

0x00000001 Absolute
folder paths

0x00000002
Reserved file

© 2025 Robox SpA

150

BCC Communication Protocol v 3.10

Offset Type Label Description

0x00000004 System
file

0x00000008 Illegal
file

0x00000010 File in
use (left open)

0x00000020 Hidden
file

0x00000040 Read-
only file

0x00000080 Symbolic
link

0xFO000000 File type
- 0x0 Generic

- Ox1 Folder (special
file)

- 0x2 OS standard
- 0x3 OS test
- 0x4 OS standard flat

- 0x5 Old language
(without OS)

- Ox6 FIFO (queue)

10 uié6 DEVID Flash device ID

12 ule CRC16 CRC16 file value (0 no
information available)

14 uile - Reserved

16 u32 SIZE Effective item size
[bytes]

20 STRZ FILENAME Folder or filename

Notes:

o bccDatal19 messages will begin with pid = 0 and will be incremented by 1 at each
message.

e bccEndDatal+e3) contain last item and after it the transfer is completed

e The data transfer could be aborted at any time with a bccAbort[3) command.

Query information of a file in a flash folder
Code: AS + 110

Symbolic: bccFlashFileInfo

© 2025 Robox SpA

Messages 151

This command will request information about a flash file of the connected device. Request
parameters are the following:

Offset Type Label Description

0 u32 FLAGS Operating flags:
0x00000001
Generate absolute
paths

0x00000006 Mask for
date/time type:

- 0x0 (default)
- 0x1 Creation

- 0x2 Last
modification

- 0x3 Last access

0x00000008 Fully
qualified filename
(implies absolute
paths flag)

0x00000010
Dereference symbolic
links (#1)

4 STRZ FILENAME Filename (with opt.
folder)

Note (#1): when showing file information for a symbolic link, show information for the file the
link references rather than for the link itself.

On success, a beccAck[6h is received with the following data:

Offset Type Label Description

0 us8 HH Time (hour) of the
item

1 us8 MM Time (minute) of the
item

2 us SS Time (second) of the
item

3 us8 DD Date (day) of the item

4 us MO Date (month) of the
item

5 us8 YY Date (year - 2000) of
the item

6 u32 ATTRIB Attributes:
0x00000001 Absolute
path
0x00000002

Reserved file

© 2025 Robox SpA

152

BCC Communication Protocol v 3.10

Offset

10

12

14

16

20

Type

uleé

ule

uleé

u32

STRZ

Label

DEVID

CRC16

SIZE

FILENAME

On failure, a becNack[eh is received. Specific errors:

NACK code

nackFileNotExist
(nackNotFound)

nacklllegalArgs

Description

File not existing

Illegal parameters

Description

0x00000004 System
file

0x00000008 Illegal
file

0x00000010 File in
use (left open)

0x00000020 Hidden
file

0x00000040 Read-
only file

0x00000080 Symbolic
link

0xFO000000 File type
mask:

- 0x0 Generic

- Ox1 Folder (special
file)

- 0x2 OS standard
- 0x3 OS test
- 0x4 OS standard flat

- 0x5 Old language
(without OSF)

- 0x6 FIFO (queue)
Flash device ID

CRC16 file value
(0=no info available)

Reserved

Effective file size
[bytes]

Filename

Extra data

U16 What illegal:
1=Flags
2=Folder

3=Filename

© 2025 Robox SpA

Messages 153

Query information of a flash
Code: AS + 109

Symbolic: bccFlashInfo

This command will request information about a flash of the connected device. Request
parameters are the following:

Offset Type Label Description

0 u32 FLAGS Operating flags:
0x00000001 Search
by name

0x00000002 Query
underlying physical
device name

4 ule DEVID Flash device ID

6 STRZ NAME Flash name (if search
by name required)

On success, a bccAckl il is received with the following data:

Offset Type Label Description

0 ulé6 TYPE Device type
0x0000 Generic

0x0001 Standard
flash (Robox)

0x0002 Limited flash
(Robox)

0x0003 Compact
flash/SD/MicroSD (<
4GiB)

0x0004 Ramdisk
(Robox)

0x0005 Larger
SD/MicroSD (>= 4GiB)

2 uile DEVID Flash device ID
4 B[32] DATA Data according TYPE
36 STRZ NAME Flash name (if

required) or physical
device name

On failure, a beccNacklh is receivedSpecific errors:

NACK code Description Extra data
nacklllegalArgs Illegal parameters U16 What illegal:
1=Flags

© 2025 Robox SpA

154

BCC Communication Protocol v 3.10

NACK code Description

For standard flash (type 0x0001) data are following:

Offset Type Label
+0 u32 SIZE
+4 u32 FREE
+8 B[24]

For limited flash (type 0x0002) data are following:

Offset Type Label
+0 u32 FREE
+4 B[28]

Extra data

2=Flash device ID

3=Flash name

Description
Flash size [bytes]

Flash free space
[bytes]

(reserved)

Description

Flash free space
[bytes]

(reserved)

For compact flash/SD/MicroSD (< 4GiB; type 0x0003) data are following:

Offset Type Label
+0 u32 SIZE
+4 u32 FREE
+8 B[24]

For ramdisk (type 0x0004) data are following:

Offset Type Label
+0 u32 SIZE
+4 u32 FREE
+8 B[24]

For larger SD/MicroSD (>= 4Gib; type 0x0005) data are following:

Offset Type Label
+0 ue4 SIZE

+8 ue4 FREE

+16 B[16]

Description
Flash size [bytes]

Flash free space
[bytes]

(reserved)

Description
Flash size [bytes]

Flash free space
[bytes]

(reserved)

Description
Flash size [bytes]

Flash free space
[bytes]

(reserved)

© 2025 Robox SpA

Messages 155

Query information of a flash by folder

Code: AS + 116

Symbolic: bccFlashInfoByFolder

This command will request information about the corresponding flash device of the specified

folder. Request parameters are the following:

Offset Type Label
0 u32 FLAGS
4 STRZ PATH

On success, a bccAcklsd) is received with the following data:

Offset Type Label
0 uie TYPE
2 uie DEVID
4 B[32] DATA
36 STRZ NAME

On failure, a beccNackleh is receivedSpecific errors:

NACK code Description

nacklllegalArgs Illegal parameters

For standard flash (type 0x0001) data are following:

Description

Operating flags:
(none)

Flash folder path (0-
termined, absolute,
using / as folder
separator)

Description

Flash device type
0x0000 Generic

0x0001 Standard
flash (Robox)

0x0002 Limited flash
(Robox)

0x0003 Compact
flash/SD/MicroSD (<
4GiB)

0x0004 Ramdisk
(Robox)

0x0005 Larger
SD/MicroSD (>= 4GiB)

Flash device ID
Data according TYPE

Fully qualified flash
name

Extra data

Ul6 What illegal:
1=Flags

2=Flash device ID

3=Flash name

© 2025 Robox SpA

156 BCC Communication Protocol v 3.10

Offset Type Label
+0 u32 SIZE
+4 u32 FREE
+8 B[24]

For limited flash (type 0x0002) data are following:

Offset Type Label
+0 u32 FREE
+4 B[28]

Description
Flash size [bytes]

Flash free space
[bytes]

(reserved)

Description

Flash free space
[bytes]

(reserved)

For compact flash/SD/MicroSD (< 4GiB; type 0x0003) data are following:

Offset Type Label
+0 u32 SIZE
+4 u32 FREE
+8 B[24]

For ramdisk (type 0x0004) data are following:

Offset Type Label
+0 u32 SIZE
+4 u32 FREE
+8 B[24]

For larger SD/MicroSD (>= 4Gib; type 0x0005) data are following:

Offset Type Label
+0 u64 SIZE

+8 ue4 FREE
+16 B[16]

Query information of a flash folder

Code: AS + 115

Symbolic: bccFlashFolderInfo

Description
Flash size [bytes]

Flash free space
[bytes]

(reserved)

Description
Flash size [bytes]

Flash free space
[bytes]

(reserved)

Description
Flash size [bytes]

Flash free space
[bytes]

(reserved)

This command will request information about an existing flash folder. Request parameters

are the following:

© 2025 Robox SpA

Messages 157

Offset Type Label Description

0 u32 FLAGS Operating flags:

0x00000003 Mask for
date/time type:

- 0x0 (default)
- O0x1 Creation

- 0x2 Last
modification

- 0x3 Last access
4 STRZ PATH Flash folder absolute

path (O-termined,
using / as folder

separator)

On success, a bccAck[6d) is received with the following data:

Offset Type Label Description

0 us8 HH Time (hour) of the
folder

1 us8 MM Time (minute) of the
folder

2 us SS Time (second) of the
folder

3 us8 DD Date (da) of the folder

4 us8 MO Date (month) of he
folder

5 us8 YY Date (year - 2000) of
the folder

6 u32 ATTRIB Folder attributes:
0x00000002

Reserved folder

0x00000004 System
folder

0x00000008 Illegal
folder

0x00000020 Hidden
folder

0x00000040 Read
only folder

10 uleé DEVID Flash device ID

On failure, a bccNack[R is received. Specific errors:

© 2025 Robox SpA

158

BCC Communication Protocol v 3.10

NACK code

nackFolderNotExist
(nackNotFound)

nacklllegalArgs

Query list of flashes
Code:

Symbolic:

Description

Folder path not found

Illegal argument

AS + 111

bccFlashlList

Extra data

Ul6 What illegal:
1=Flags
2=Folder path

This command will request a list of available flashes of the connected device. Request

parameters are the following:

Offset

0

On success, a becAck[6d is received with the following data:

Offset
0
1

3

Label

FLAGS

Label
COUNT
DEVIDO

DEVID1

On failure, a beccNackledl is received. Specific errors:

NACK code

nacklllegalArgs

Query tree of flash folders

Code:

Symbolic:

Description

Illegal argument

AS + 107

bccFlashTree

Description

Operating flags:
(none)

Description
N. of device
Flash device 0 ID

Flash device 1 ID

Extra data

U1l6 What illegal:
1=Flags

This message is obsolete, use bccFlashDir[148) with appropriate settings flag.

© 2025 Robox SpA

Messages 159

Rename a file in a flash folder
Code: AS + 104

Symbolic: bccFlashFileRename

This command will rename a file in a flash folder of the connected device. Request
parameters are the following:

Offset Type Label Description

0 u32 FLAGS Operating flags:
0x00000001
Overwrite target file

4 us SLEN Source length (+1)

5 us8 TLEN Target length (+1)

6 STRZ SOURCE Source filename (with
opt. folder)

STRZ TARGET Target filename (with

no folder)

On success, a becAck[6h is received with no data.

On failure, a beccNack(e4l is received. Specific errors:

NACK code Description Extra data
nackFileNotExist Source folder and/or filename
(nackNotFound) not existing
nackFileExist Target filename already
existing
nacklllegalArgs Illegal parameters U16 What flags:
1=Flags

2=Source folder

3=Source filename

4=Target folder

5=Target filename
nackReadOnly The target file (or the flash

itself) is read-only and cannot
be overwritten.

Save a file from a flash folder
Code: AS + 101

Symbolic: bccFlashFileSave

© 2025 Robox SpA

160

BCC Communication Protocol v 3.10

This command will save a generic file from a flash folder of the connected device to the local

disk. Request parameters are the following:

Offset Type Label

0 u32 FLAGS

4 u32 OFFSET
8 uie CRC16
10 STRZ FILENAME

On failure, a bccNackled is received with following errors:

NACK code Description
nackFileNotExist Flash file not exist
(nackNotFound)

nackOpenError Error opening the flash file
nackReadError Error reading tjhe flash file
nackMemoryFull Out of memory (or general

memory problem)

nacklllegalArgs Illegal argument

On success, a bccAck[6dl is received with following data:

Offset Type Label

0 u32 OFFSET

4 u32 FILESIZE

8 u32 ALLOCADDR

Description

Operating flags:

0x00000001
Overwrite target file

0x00000002 Recover
save, if needed

0x00000004 No BIF16
handling

Staring required
offset

Calculated CRC16
(from O to OFFSET-1),
if OFFSET greater
than zero.

Filename

Extra data

U1l6 What illegal:
1=Folder
2=Filename
3=Flags
4=0ffset
5=Crcl6

Description

Applied starting load
offset

Effective file size
[bytes]

Allocation address
(only BIF16)

© 2025 Robox SpA

Messages 161

Offset Type Label Description

12 u32 STARTADDR Start address (only
BIF16)

16 u8 HH Time (hour) of the file

17 us8 MM Time (minute) of the
file

18 us8 SS Time (second) of the
file

19 us DD Date (day) of the file

20 us MO Date (month) of the
file

21 us8 YY Data (year - 2000) of
the file

22 u32 ATTR Attributes:
0x00000002

Reserved file

0x00000004 System
file

0x00000020 Hidden
file

0x00000040 Read-
only file

0xFO000000 File type
mask:

- Ox0 Generic

- 0x2 OS standard

- 0x3 OS test

- 0x4 OS standard flat

- 0x5 Old language
(without OS)

- 0x6 FIFO (queue)

If required starting offset cannot be applied (or CRC16 does not match), returned applied
offset is zero.

NOTE: the SCH value of this bccAck will be the DCH for all subsequent commands/message
for this data transfer.

In order to receive data from the device, you should send periodically a becIBlockl1ee)
message, indicating how many data packet the device can send you. After you received
required number of packet (or less if receiving a bccEndData[+)), you can transmit a new
bccIBlockl 168,

The beclBlock[+e8l has the following data:

© 2025 Robox SpA

162 BCC Communication Protocol v 3.10

Offset Type Label Description

0 us COUNT N. of binary packet to
send

Notes:

e If you send correcly beclBlock[6 but, after an amount of time, you don't receive any data,
you can decide to abort the transfer, using the bccAbort[td) command.

e On slower communication lines use 1 as COUNT value; on standard RS232 use 3 as
COUNT value.

File raw content (data) will be trasmitte by the device with the bccDatal+68) message (for last
packet use bccEndDatal+s) to indicate end of data), with the following format:

Offset Type Label Description

0 u32 OFFSET Data offset

4 B[] DATA Binary data to send
Notes:

e bccDatal 3 (or bccEndDatal+63)) messages will begin with pid = 0 and will be incremented
by 1 at each message.

o DATA size is in range 1-251 for each bccDatal13) message but could be less for
bccEndDatal+68l message.

e The data transfer could be aborted at any time with a bccAbort[s) command.
« If required file is empty, you will receive directly bccNoData[+e8) message.

After you receive bccEndDatal 63 (or bccNoDatal+6) message you should send a
bccCompleted[+w7 message (if all things are right) to report that the file transfer has been
completed: if you need more time before sending this message, please periodically send a
bccWait[160 message to inform the connected device about the delay. The bccCompleted [+

data are:

Offset Type Label Description

0 u3s2 SIZE Total file size [bytes]

4 u32 COUNT No. of total binary
packet received

Notes:

» Some BCC/31 implementation have limit on the total delay time for bccWait[+h messages:
when the limit is reached, the operation will expire.

At any time the device can decide to abort the transfer. In this case you will receive the
notification via the bccAborted[+e8) message.

Set attributes in a flash folder
Code: AS + 118

Symbolic: bccFlashSetAttributes

© 2025 Robox SpA

Messages 163

This command will set multiple flash object (file/folder) attributes on the connected device.
Request parameters are the following:

Offset Type Label Description

0 u32 FLAGS Operating flags:

0x00000001 Absolute
paths

0x00000002
Recursive

0x00000004 Set
folders

0x00000008 Set files

0x00000010 Set

hidden files/folders
4 u32 ATTRIB Attributes to set:

0x00000004 System
file
0x00000020 Hidden
file

0x00000040 Read-
only file

8 u32 ATTRIBM Attributes mask (see
ATTRIB)

12 STRZ FILEMASK Folder and/or

filename mask (with
jollies)

On success, a bccAck[64l is received with the following data:

Offset Type Label Description

0 u32 COUNT Number of changed
objects (file/folders)

On failure, a becNack[d is received. Specific errors:

NACK code Description Extra data
nacklllegalArgs Illegal argument Ul6 What illegal:
1=Flags

2=Attributes

3=Attributes mask

4 =Filemask
nackReadOnly The flash (or the device itself)

is read-only and cannot be
writtten.

© 2025 Robox SpA

164

BCC Communication Protocol v 3.10

General handling
These message are used for general purpose in the BCC protocol.

o bccAck[+ed), General acknowledge e bcclBlock[68), Software inter-block

o bceNackl+ed, General NOT acknowledge e bccCheck(168), Check-point command

e bccDataltes), Binary data e bccBusylies), System busy event

e bcecAbortlte3), Abort command e bccCompleted[t7), Completation event
e bccAborted[6d), Abort event e bccWaitlen, Wait more

e becEndDatal68), End of data e bccReadyl+eh, Ready

e bccNoDatal+e), No data

General acknowledge
Code: 1

Symbolic: bccAck

General acknowledge message, usually used as reply message of another request
message: some time can contain data.

General NOT acknowledge
Code: 2

Symbolic: bccNack

General not acknowledge message, usually used as negative reply message of another
request message. Data area is the following:

Off Type Description

0 uleé Original request message
code, to wich the erroris
referred

2 u1ieé Nack error code[2sd)

4 ulé Nack extra data (optional, not

for all messages)

NOTE: to validate a NACK message, you should even consider area data greater/equal to 4
bytes. If a NACK provide extra information and they are not received (but a least four initial
bytes) the message is valid too, but extra information are declared 'not provided' (for
example from old BCC implementation).

Some common NACK error codes:

NACK code Description Extra data

nackWrongCommand The command in not
implemented

nackMissingArgs One or more parameter
missing

© 2025 Robox SpA

Messages 165

NACK code Description Extra data
nackNotAuthorized The command could be valid
but current authentication

does not allow it (see network
interfaces[272).

nacklllegalMode The command is valid and
authorized, but current

mode/status does not permit it
to be processed.

nackResourceBusy Required resource is not
available at this moment.

Binary data
Code: 3

Symbolic: bccData
General message to transport binary / general purpose data.

Abort command
Code: AS+4

Symbolic: bccAbort

General command to request abort of current operation, in a specific usage context. If while
waiting bccAck/beccNack for the command, you received the beccAborted|ss) notification you
should even wait for bccAck or bccNack, but result o abort will be bccAck.

Request data area is the following:

Off Type Description

0 uleé Abort code, usually a standard
nack error code|[23)

2 uile Nack extra data: value
depends on context usage.

4 STRZ Optional error string (0
termined)

Abort event
Code: 5

Symbolic: bccAborted

General information about an abort event: data area is the following, but can have
additional information depending the usage context:

© 2025 Robox SpA

166

BCC Communication Protocol v 3.10

Off Type Description

0 uie Abort code, usually a standard
nack error code[zs3)

2 ulé Nack extra data: value
depends on context usage.

4 STRZ Optional error string (0
termined)

End of data

Code: 6

Symbolic: bccEndData

When this message is used instead of bccDatal+e3), it mean that there are no more data that
can be received.

No data
Code: 7
Symbolic: bccEndData

When this message is used instead of bccDatal6d), it mean that there is not data to be
received.

Software inter-block
Code: 8

Symbolic: bccIBlock

This message is usually used as software inter-block during data transfer to specifying how
many bccDatal 3 can be sent to the receiver in a single shoot. It's data area depend on
usage context.

Check-point command
Code: AS+9
Symbolic: bccCheck

This command is used as general purpose check command, to verify something.

Optional data area on command, answer data and nack codes , depend on context usage.

System busy event
Code: 10

Symbolic: bccBusy

This message is usually used instead of bccNack, indicating that the receiver cannot handle
the command because is busy to do something else: user can way an amount of time and
retry the command or operation.

© 2025 Robox SpA

Messages 167

Completation event
Code: 11

Symbolic: bccCompleted

This message is usually used to indicate that an operation or request has been completed:
it's data area depend on usage context.

Wait more
Code: 12
Symbolic: bccWait

This message is usually used to indicate that an operation or request need more time in
order to completed: it's data area depend on usage context.

Ready
Code: 13
Symbolic: bccReady

This message is usually used to indicate that something is ready in an operation: it's data
area depend on usage context.

/O handling

NOTE: although defined and used on some hardware Robox device, these command are
declared deprecated and are not supported by RTE: we suggest to use variables [24)
instead.

These message are used getting and setting I/O value to a connected device.

Get commands: Force commands:

e bccGetIC[7h, get input channel e bccForcelCl6d), force input channel

e bccGetIW16[+7h, get input word 16bit e bccForceIW 16[468). force input word 16bit
e bccGetOC[72), get output channel e bccForceQC[16d), force output channel

e bccGetOW 16[+73), get output word 16bit e bccForceOW16[78), force output word16bit

Set commands: Release commands

e bccSetOC[7N, set output channel e bccReleaselC[173), release input channel

e bccSetOW 16[+73), set output word 16bit e bccReleaseIW16[73). release input word
16bit

e bccReleaseOC[17), release output channel

e bccReleaseOW 16[78), release output
word16bit

e bccReleaseAllIC[74), release all input
channels

© 2025 Robox SpA

168 BCC Communication Protocol v 3.10

e bccReleaseAllOC[4), release all output

channels
Force input channel
Code: AS + 206
Symbolic: bccForcelIC

NOTE: this command is not supported in RTE firmware.

This command will force the state of an input channel. Request parameters are the

following:

Offset Type Label
0 uie CH

2 us STATE

On success, a bccAck[sdl is received with no data.

On failure, a bccNack[+R is received. Specific errors:

NACK code Description
nacklIllegalArgs Illegal arguments
nackReadOnly Channel is not writable

Force input word 16bit
Code: AS + 207

Symbolic: bccForceIW16

NOTE: this command is not supported in RTE firmware.

Description

Required channel
index

(see your hardware
documentation for
valid channel values)

Required channel
logical state
(0=0ff/Open,
otherwise On/Close)

Extra data

Ul6 What illegal

1=Channel index

This command will force the state of multiple 16 bit input word. Request parameters are the

following:
Offset Type Label
0 us REP

Description

No. of consecutive
input words (#1)

© 2025 Robox SpA

Messages 169

Offset Type Label Description
1 ule INDEX Required input word
first index

(see your hardware
documentation for
valid index values)

3 ulé6 VALO Value for input word 0
5 ulé6 VAL1 Value for input word 1
7

Note (#1): data size is calulated as 3 + (2 bytes * REP). Max number of REP is 126.

On success, a becAck[6h is received with no data.

On failure, a beccNack(te4l is received. Specific errors:

NACK code Description Extra data

nacklllegalArgs Illegal arguments Ul6 What illegal
1=No. of input words

2=Iiput word first index

nackReadOnly Input word is not writable U16 Index of input word in
error

Force output channel
Code: AS + 208

Symbolic: bccForceOC

NOTE: this command is not supported in RTE firmware.

This command will force the state of an ouput channel. Request parameters are the

following:

Offset Type Label Description

0 ule CH Required channel
index
(see your hardware
documentation for
valid channel values)

2 us8 STATE Requeired channel

logical state

(0=0ff/Open,

otherwise On/Close)
On success, a bccAck[6 is received with no data.

On failure, a becNack[ed is received. Specific errors:

© 2025 Robox SpA

170 BCC Communication Protocol v 3.10

NACK code

nacklIllegalArgs

nackReadOnly

Force output word 16bit

Code:

Symbolic:

Description Extra data

Ilegal arguments Ul6 What illegal

1=Channel index

Channel is not writable

AS + 209

bccForceOW16

NOTE: this command is not supported in RTE firmware.

This command will force the state of multiple 16 bit output word. Request parameters are

the following:

Offset

0

7

Type

us

ule

uleé

ule

Label Description

REP No. of consecutive
output words (#1)

INDEX Required output word
first index

(see your hardware
documentation for
valid index values)

VALO Value for output word
0

VAL1 Value for output word
1

Note (#1): data size is calulated as 3 + (2 bytes * REP). Max number of REP is 126.

On success, a becAck[6h is received with no data.

On failure, a beccNack[dlis received. Specific errors:

NACK code

nacklllegalArgs

nackReadOnly

Description Extra data

Illegal arguments Ul6 What illegal
1=No. of output words
2=0utput word first index

Output word is not writable U16 Index of output word in
error

© 2025 Robox SpA

Messages 171

Get input channel
Code: AS + 200

Symoblic: bccGetIC

NOTE: this command is not supported in RTE firmware.

This command will get value for a logical input channel. Request parameters are the

following:
Offset Type Label Description
0 ulé6 CH Required channel

index

(see your hardware
documentation for

valid channel values)

On success, a bccAckl sl is received with following data:

Offset Type Label Description

0 us PSTATE Channel physical
state (0=0ff/Open,
otherwise On/Close)

1 U8 LSTATE Channel logical state

(0=0ff/Open,
otherwise On/Close)

On failure, a beccNack(edl is received. Specific errors:

NACK code Description Extra data

nacklllegalArgs Illegal arguments Ul6 What illegal

1=Channel index

nackWriteOnly Channel is not readable

Get input word 16bit
Code: AS + 201

Symbolic: bccGetIW16

NOTE: this command is not supported in RTE firmware.

This command will get value for multiple 16 bit input word. Request parameters are the

following:
Offset Type Label Description
0 us8 REP No. of consecutive

input words (#1)

© 2025 Robox SpA

172 BCC Communication Protocol v 3.10

Offset Type Label Description

1 ule INDEX Index of first input
word required

(see your hardware

documentation for

valid index values)
Note (#1): maximum value for REP in BCC/31 is 63.

On success, a bccAcklsdl is received with following data:

Offset Type Label Description

0 ulé6 PSTATEO Physical state of input
word 0

2 ulé6 LSTATEO Logical state of input
word 0

4 ulé6 PSTATE1 Physical state of input
word 1

6 uie LSTATE1 Logical state of input
word 1

8

Notes:

e data size is calulated as 4 bytes * REP.

On failure, a becNack[d is received. Specific errors:

NACK code Description Extra data

nacklllegalArgs Illegal arguments U1l6 What illegal
1=No. of input words

2=Input words first index

nackWriteOnly Input word is not readable U16 Index of input word in
error

nackNotAuhorized

Get output channel

- (deprecated)
Code: AS + 202
Symbolic: bccGetOC

NOTE: this command is not supported in RTE firmware.

This command will get value for a logical output channel. Request parameters are the
following:

© 2025 Robox SpA

Messages 173

Offset Type Label Description
0 ulé6 CH Required channel
index

(see your hardware
documentation for
valid channel values)

On success, a bccAck[64l is received with following data:

Offset Type Label Description

0 us8 PSTATE Channel physical
state (0=0ff/Open,
otherwise O/Close)

1 us8 LSTATE Channel logical state

(0=0ff/Open,
otherwise O/Close)

On failure, a beccNack[wdl is received. Specific errors:

NACK code Description Extra data

nacklllegalArgs Illegal arguments U16 What illegal
1=Channel index

nackWriteOnly Output channel is not
readable

Get output word 16bit
Code: AS + 203

Symbolic: bccGetOW16

NOTE: this command is not supported in RTE firmware.
This command will get value for multiple 16 bit output word. Request parameters are the

following:

Offset Type Label Description

0 us REP No. of consecutive
output words (#1)

1 ulé6 INDEX Index of first output

word required

(see your hardware
documentation for
valid index values)

Note (#1): maximum value for REP in BCC3 is 63.

On success, a bccAcklsl is received with following data:

© 2025 Robox SpA

174 BCC Communication Protocol v 3.10

Offset Type Label Description

0 ulé6 PSTATEO Physical state of
output word 0

2 uie LSTATEO Logical state of
output word 0

4 ulé6 PSTATE1 Physical state of
output word 1

6 ulé6 LSTATE1 Logical state of
output word 1

8

Notes:

e data size is calulated as 4 bytes * REP.
On failure, a bccNack[+41 is received. Specific errors:
NACK code Description Extra data
nacklllegalArgs Illegal arguments U1l6 Whatillegal
1=No. of output words
2=0utput word first index

nackWriteOnly Output word not readable U16 Index of output word in
error

Release all input channel
Code: AS + 214

Symbolic: bccReleaseAllIC

NOTE: this command is not supported in RTE firmware.
This command will release ALL forced logical input channel. Request has no parameters.

On success, a becAck[63 is received with no data.

On failure, a beccNack[®h is received.

Release all output channel
Code: AS + 215

Symbolic: bccReleaseAllOC

NOTE: this command is not supported in RTE firmware.
This command will release ALL forced logical output channel. Request has no parameters.
On success, a becAck[6h is received with no data.

On failure, a beccNack[#h is received.

© 2025 Robox SpA

Messages 175

Release input channel
Code: AS + 210

Symbolic: bccReleaseIC

NOTE: this command is not supported in RTE firmware.
This command will release a forced logical input channel. Request parameters are the

following:
Offset Type Label Description
0 uleé CH Required channel

index

(see your hardware
documentation for
valid channel values)

On success, a bccAck[+6R is received with no data.

On failure, a becNackledl is received. Specific errors:

NACK code Description Extra data

nacklllegalArgs Illegal arguments U1l6 Whatillegal
1=Channel index

nackReadOnly Channel is not writable

Release input word 16bit
Code: AS + 211

Symbolic: bccReleaseIW16

NOTE: this command is not supported in RTE firmware.

This command will release the state of multiple 16 bit input word. Request parameters are
the following:

Offset Type Label Description

0 us REP No. of consecutive
input words (#1)

1 ulé6 INDEX Index of first required
input word

(see your hardware
documentation for
valid index values)

Note (#2): maximum number of REP is 126.

On success, a becAck[h is received with no data.

© 2025 Robox SpA

176 BCC Communication Protocol v 3.10

On failure, a beccNackledl is received. Specific errors:

NACK code Description Extra data

nacklllegalArgs Illegal arguments U1l6 Whatillegal
1=No. of input words

2=Input word first index

nackReadOnly Input word is not writable U16 Index of output word in
error

Release output channel
Code: AS + 212

Symbolic: bccReleaseOC

NOTE: this command is not supported in RTE firmware.

This command will release a forced logical output channel. Request parameters are the

following:
Offset Type Label Description
0 ulé6 CH Required channel

index

(see your hardware
documentation for
valid channel values)

On success, a bccAck[sdl is received with no data.

On failure, a becNack[+R is received. Specific errors:

NACK code Description Extra data

nacklIllegalArgs Illegal arguments Ul6 What illegal

1=Channel index

nackReadOnly Channel is not writable

Release output word 16bit
Code: AS + 213

Symbolic: bccReleaseOW16

NOTE: this command is not supported in RTE firmware.

This command will release the state of multiple 16 bit output word. Request parameters are
the following:

© 2025 Robox SpA

Messages 177

Offset Type Label
0 us REP
1 uie INDEX

Note (#1): maximum number of REP is 126.
On success, a becAck[63 is received with no data.

On failure, a becNackl 4l is received. Specific errors:

NACK code Description
nacklllegalArgs Illegal arguments
nackReadOnly Output word is not writable

Set output channel

Code: AS + 204

Symbolic: bccSetOC

NOTE: this command is not supported in RTE firmware.

Description

No. of consecutive
output words (#1)

Index of first required
output word

(see your hardware
documentation for
valid index values)

Extra data

Ul6 What illegal
1=No. of output words
2=0utput word first index

U16 Index of output word in

This command will set value for a output channel. Request parameters are the following:

Offset Type Label
0 uie CH
2 us STATE

On success, a becAck[#h is received without data.

On failure, a beccNack[d is received. Specific errors:
NACK code Description

nacklllegalArgs Illegal arguments

Description

Required channel
index

(see your hardware
documentation for
valid channel values)

Required state
(0=0ff/Open,
otherwise On/Close)

Extra data

U16 What illegal

1=Channel index

© 2025 Robox SpA

178 BCC Communication Protocol v 3.10

NACK code Description Extra data

2=Channel state

nackReadOnly Channel is not writable

Set output word 16bit
Code: AS + 205

Symbolic: bccSetOW16

NOTE: this command is not supported in RTE firmware.

This command will set value for multiple 16 bit output word. Request parameters are the

following:

Offset Type Label Description

0 us8 REP No. of consecutive
output words (#1)

1 ulé6 INDEX Index of first output
word required
(see your hardware
documentation for
valid index values)

3 uie MASKO Mask of settable bits
for output word 0

5 ulé6 VALO Value for output word
0

7 ulé6 MASK1 Mask of settable bits
for output word 1

9 ulé6 VAL1 Value for output word
1

11

Note (#1): maximum value for REP in BCC3 is 63.
NotE (#2): data size is calulated as 3 bytes + (4 bytes * REP).

When setting a value for output word X, the effective value is written as (considering
ACT_VALUE as current output word value):

// Pseudo code with C syntax
VALUE = (ACTi\/ALUE & ~MASKx) | (VALx & MASKX)

On success, a becAck[6 will received with no data.

On failure, a becNack[®h is received. Specific errors:

NACK code Description Extra data

nacklllegalArgs Illegal arguments U16 Whatillegal

© 2025 Robox SpA

Messages 179

NACK code Description Extra data

1=No. of output words
2=0utput word first index
3=Value

U16 Bad value index, from O
to REP-1

nackReadOnly Output word is not writable U16 Index of output word in
error

Ladder diagram handling

These messages are used to handle ladder diagram activities, for a connected device.
Task handling: Monitor handling:

e bccladTaskload[d), load ladder task to e bccladMonStart[sd, start ladder monitor

memory e bccladMonRestart[+8d), restart ladder
e becladTaskSaveled), save ladder task from monitor

memory e bccladMonStopled), stop ladder monitor
e bccladMonWd[e3), watch-dog for Ladder
Live changes handling: monitor
e becladLiveload[+sh, load live changes e bccladMonStatus[+3), Query ladder monitor
e becladliveTest[+sn, start live changes status
testing
e bcecladLiveConfirmld), confirm live changes
e becladliveCancell79), cancel live changes
e becladliveWd[+sd), watch-dog for Live
changes
Cancel live changes
Code: AS + 805
Symbolic: bccLadLiveCancel

This command will cancel live changes testing for a specific session. Request parameters are
the following:

Offset Type Label Description
0 u32 SESSID Session ID

On success, a becAck[63 is received with no data.

On failure, a becNacklh is received. Specific errors:

NACK code Description Extra data

nacklllegalArgs Illegal arguments U16 What illegal:

© 2025 Robox SpA

180 BCC Communication Protocol v 3.10

NACK code Description Extra data

1=Session ID

nackNotFound Live changes session not
found

Confirm live changes
Code: AS + 804

Symbolic: bccLadLiveConfirm

This command will confirm and apply live changes for a specific session. Request parameters
are the following:

Offset Type Label Description

0 u32 SESSID Session ID

On success, a becAck[6d is received with no data.

On failure, a beccNack[ed is received. Specific errors:

NACK code Description Extra data
nacklllegalArgs Illegal arguments U16 What illegal:
1=Session ID
nackNotFound Live changes session not
found

Load a ladder task to memory
Code: AS + 800

Symbolic: bccLadTaskLoad

This command will load the ladder task (the .LAD file itself) directly to device memory,
replacing the existing one: this is a standard data load sequence[s".

REQDATA structure is the following:

Offset Type Label Description

0 u32 SIZE Ladder task size
[byte]

4 U8[12] = (riservati)

16 uie PID Process ID

18 u32 FLAGS Operating flags:
(none)

If initial request fails, bccNack[+ed) is received. Specific errors

© 2025 Robox SpA

Messages 181

NACK code Description Extra data

nacklllegalArgs Illegal arguments U1l6 What illegal:
1=Task size
2=Process ID
3=Flags

nackNotFound Process not found

NOTE: to have more information about the transferred data, see the .LAD File Specifications
in the ladder diagram documentation.

Load live changes
Code: AS + 802

Symbolic: bccLadLiveLoad

This command will load live changes for a program directly to device memory: this is a
standard standard data load sequence[sh.

If the command is accepted, the device will open a live change session that can be started
with the becladLiveTest[sh message and kept alive with the bccladLiveWd[1s9) message:
this session must be stopped with bccladLiveConfirm[8 or becLadLiveCancell179 before it
expire.

For a single PID, while its live change session is in testing (active) it is not possible to load
any other changes: otherwise any further load will replace current changes by creating a
new live changes session. Therefore, any PID can have only one live changes session.

REQDATA structure is the following:

Offset Type Label Description

0 u32 SIZE Live changes size
[byte]

4 u8[12] - (riservati)

16 ulé6 PID Process ID

18 u32 FLAGS Operating flags:
(none)

If initial request fails, becNacklsdl is received. Specific errors

NACK code Description Extra data

nacklllegalArgs Illegal arguments Ul6 What illegal:
1=Live changes size
2=Process ID
3=Flags

nackNotFound Process not found

ACKDATA structure is the following:

© 2025 Robox SpA

182

BCC Communication Protocol v 3.10

Offset Type Label Description

0 us BSIZE Required item size
(0O=default), excluding
leading U32 offset

data.

1 U8[15] (riservati)

16 u32 SESSID Live changes session
ID

NOTE: to have more information about the transferred data, see the .LAD File Specifications
in the ladder diagram documentation.

Query ladder monitor status
Code: AS + 814

Symbolic: bccLadMonStatus

This command will query current status of specified ladder monitor and miscellaneous info
for the monitored process itself. Request parameters are the following:

Offset Type Label Description
0 u32 OWNER Owner ID
4 u32 MONID Monitor ID

On success, a becAck[6h is received with the following data:

Offset Type Label Description
0 us8 STATUS Current monitor
status:

0=Monitor not defined

1=Monitor active (with
data)

2=Monitor active (with
no data)

3=Monitor expired
(timer WD denied)

1 ule6 FREQ Data stream
frequency (O=data
sent when possible)
[hz]

3 us PTYPE Process type:
0=Synchronous
1=High priority
2=Normal priority
3=Low priority

© 2025 Robox SpA

Messages 183

Offset Type Label Description

4 ulé6 PFREQ Process frequency
[hz]

6 u32 PSTS Process status:
0x00000001 Process
is running

0x00000002 Process
has runtime error(s)

10 DBL PLENGTH Process length [us]

On failure, a becNack(dl is received. Specific errors:

NACK code Description Extra data
nacklllegalArgs Illegal arguments Ul6 What illegal:
1=Owner ID

2=Process ID

nackNotFound Monitor not found

Restart ladder monitor
Code: AS + 811

Symbolic: bccLadMonRestart

This command will restart the specified ladder monitor with different settings. Request
parameters are the following:

Offset Type Label Description

0 u32 OWNER Owner ID

4 u32 MONID Monitor ID

8 u32 RUNGID First rung ID

12 ule6 COUNT No. of consecutive
rungs

On success, a becAck[63 is received with no data.

On failure, a beccNack[eh is received. Specific errors:

NACK code Description Extra data

nacklllegalArgs Illegal arguments U16 What illegal
1=No. of consecutive rungs
2=0wner ID
3=Monitor ID

4=First rung ID

© 2025 Robox SpA

184 BCC Communication Protocol v 3.10

NACK code Description Extra data

nackNotFound Monitor not found

Save a ladder task from memory
Code: AS + 801

Symbolic: bccLadTaskSave

This command will save the ladder task (as a .LAD file) directly from device memory: this is a
standard data save sequence[).

REQDATA structure is the following:
Offset Type Label Description
0 us BSIZE Required item size

(0O=default), excluding
leading U32 offset

data.
1 U8[15] - (riservati)
16 uleé PID Process ID
18 u32 FLAGS Operating flags:
(none)
If initial request fails, bccNack[+ed) is received. Specific errors
NACK code Description Extra data
nacklllegalArgs Illegal arguments U16 What illegal:

1=Process ID
2=Flags

nackNotFound Process not found

NOTE: to have more information about the transferred data, see the .LAD File Specifications
in the ladder diagram documentation.

Start ladder monitor
Code: AS + 810

Symbolic: bccLadMonStart

This command will create and start a special monitor for a specific ladder process. Request
parameters are the following:

Offset Type Label Description

0 u32 OWNER Owner ID

© 2025 Robox SpA

Messages 185

Offset Type Label Description

4 ulé6 PID Process ID

6 u32 RUNGID First rung ID

10 uie COUNT No. of consecutive
rungs

12 u32 TIMEWD Initial watchdog time
[ms]

On success, a bccAck[4l is received with the following data:
Offset Type Label Description

0 u32 MONID Monitor ID

On failure, a becNack[eh is received. Specific errors:

NACK code Description Extra data

nacklllegalArgs Illegal arguments U16 Whatillegal
1=Process ID
2=No. of rungs
3=Watchdog time
4=0wner ID
5=First rung ID

nackNotFound Process not found

nackOutOfResource No more resource to create
and start a new ladder
monitor

Once started, the monitor will continue to send bccDatal+e9 messages, containing data for
each of requested rungs (or a single bccNoData [+l if no rungs or data to send):
transmission frequency is decided by the device.

Each bccDatal 13 message has have a progressive PID, starting from 0 at first data
message and has the following structure (overall cannot exceed 255 bytes total):

Offset Type Label Description
0 RUNGO Data for rung 0
RUNG1 Data for rung 1

Each RUNGXx field is structured as:

Offset Type Label Description

+0 us SIZE Rung data size (SIZE
included)

+1 u32 ID Rung ID

© 2025 Robox SpA

186

BCC Communication Protocol v 3.10

Offset

+2

+3

+6

+7

Type

us

us

us

us

Label

RTF

NBF

BITSO

BITS1

VALO

VAL1

Description

Runtime Flags

0x01 Rung not
executed

0x02 Rung with
error(s)

No. of BITS fields (min
1)
Boolean data 0

bit0 = rung general
state

Boolean data 1
(optional)

Value data 0
(optional)

Value data 1
(optional)

Items inside a rung have a natural order: monitor value for these items follow the same
order, split betwen boolean values (represented with consecutive bit in BITSx fields) and

numeric values (represented with consecutive VALx fields).

Bit no. 0 of BITSO is used to represent the general boolean state of the rung itself; starting
from bit no. 1 there are the user boolean values.

Each VALX field is structured as:

Offset

+0

+1

while the DATA field is structured as (depending on data type value):

Type
0x0
Ox1
0x2
0x3

0x4

Type

us

Offset

+1

+1

+1

+1

Label

FLAGS

DATA

Type

I8
us
I16

ule

Description

bit0-bit3 = Data type
(TYPE)

bit4-bit7 = Reserved

Raw data

Description
(reserved)

Signed integer 8bit
Unsigned integer 8bit
Signed integer 16bit

Unsigned integer
16bit

© 2025 Robox SpA

Messages 187

Type
0x5

0x6

0x7

0x8

0x9
OxA

0xB

0xC

0xD
OXE

OxF

Offset
+1

+1

+1

+1

+1
+1

+1

+1

Type
132
u32

164

ue4

DBL

FLT

Description
Sighed integer 32bit

Unsigned integer
32bit

Signed integer 64bit

Unsigned integer
64bit

Floating point 64bit
Floating point 32bit

Boolean (TRUE): has
no raw data.

Boolean (FALSE): has
no raw data.

(reserved)
(reserved)

(reserved)

NOTE: to have more informations about the composition (and the order) of data sets, see
Ladder Monitor Data Types in the ladder diagram documentation.

Start live changes testing

Code:

Symbolic:

AS + 803

bccLadlLiveTest

This command will start testing for live changes of a specific session. Request parameters

are the following:
Offset
0

Type

u32

u32

Label

SESSID

TIMEWD

On success, a bccAck[sl is received with no data.

On failure, a bccNack[R is received. Specific errors:

NACK code

nacklIllegalArgs

Description

Illegal arguments

Description

Live changes session
ID

Initial watch dog time
[ms]

Extra data
Ul6 What illegal:

1=SESSID
2=TIMEWD

© 2025 Robox SpA

188 BCC Communication Protocol v 3.10

NACK code Description Extra data
nackNotFound Live changes session not
found
Stop ladder monitor
Code: AS + 812
Symbolic: bccLadMonStop

This command will stop the specified ladder monitor (or all monitor for same owner).
Request parameters are the following:

Offset Type Label

Description
0 u32 OWNER Owner ID
4 u32 MONID Monitor ID (or

OxFFFFFFFF for all
monitor for same

owner)

On success, a bccAck[+6h is received with no data.

On failure, a beccNackledl is received. Specific errors:

NACK code Description Extra data

nacklllegalArgs Illegal arguments U1l6 What illegal:
0=Owner ID
1=Monitor ID

nackNotFound Monitor not found

Watchdog for ladder monitor

Code: 813

Symbolic: bccLadMonWd

This command will refresh the grant time (watchdog) for specified ladder monitor. Request
parameters are the following:

Offset Type Label Description

0 u32 OWNER Owner ID

4 u32 MONID Monitor ID

8 u32 TIMEWD Watchdog time [ms]

The message has no reply.

© 2025 Robox SpA

Messages 189

Watchdog for live changes
Code: 806

Symbolic: bccLadLiveWd

This command will refresh the grant time (watchdog) for specified live changes session.
Request parameters are the following:

Offset Type Label Description

0 u32 SESSID Live changes session
ID

4 u32 TIMEWD Watchdog time [ms]

The message has no reply.

Monitor handling

These messages are used for handling real-time variable monitor for a connected device.

Monitor handling: Related arguments:

e bccMonCreateltsd), create a monitor Monitor specificationm

e bccMonDestroy[19, destroy a monitor Using monitor[+M

e bccMonStart[9h, start a monitor Using multiple monitor[+2Y

e bccMonStopl(ie), stop a monitor

e bccMonStatus[ief), query a monitor status
e bccMonlList[198), query list of monitors

e bccMonQuick[), quick monitor

e bccMonWd/[1e8), watchdog for a monitor

e bccMonWrite[19)), write a monitor

e bccMonStatInfolt9d), query monitors statistics

Create a monitor

Code: AS + 400

Symbolic: bccMonCreate

This command will try to create a new variable monitor on the connected device. Request
parameters are the following:

Offset Type Label Description

0 u32 OWNER Owner ID

4 us N Number of variables
(1-25)

5 VAR[o0 VAR1 Data for variable 1

© 2025 Robox SpA

190

BCC Communication Protocol v 3.10

Offset Type Label Description
VAR[o™ VAR2 Data for variable 2
VAR[9" VAR{N} Data for variable {N}
Notes:

e maximum value for N depend on maximum data size (no more than 251 bytes) with a limit
of 25 variables.

On success, a bccAck[6l is received with the following data:

Offset Type Label Description
0 u32 ID Monitor ID
4 U8 SIZE Total data size,

calculated by device
(must match your
request resulting data

size).

On failure, a becNackledl is received. Specific errors:
NACK code Description Extra data
nackOutOfResource No more resource to create a

new monitor,
nackDataOverflow Data for monitor is exceeding

the maximum limit

(for BCC3 is 255 bytes)
nacklllegalArgs Illegal arguments U1l6 Whatillegal

1=(unused)

2=Number of variable

10+x=Bad variable {x} (x is
1-based)

U16 Variable error code
1=Unkown type

2=Bad index

3=Bad address

4=Bad repeat counter

5=Variable data too long

Notes:

e Don't make any assumption about monitor ID assignment: they are strictly depending to
a specific implementation of the BCC3 protocol and can be both in sequential or random
order.

e Don't make any assumption of monitor definition persistence: if monitor structures - on a
device - run out of space, the specific implementation of the BCC3 protocol can act in
different way:

© 2025 Robox SpA

Messages 191

1. Reply with a nackOutOfResouce error.
2. Reuse monitor entries not yet started (older or in an arbitrary order).

e Monitor can use not initialized variables in reading, but they always have conventional 0
value.

Destroy a monitor
Code: AS + 401

Symbolic: bccMonDestroy

This command will try to destroy an existing variable monitor (or all monitor of the owner)
on the connected device. Request parameters are the following:

Offset Type Label Description
0 u32 OWNER Owner ID
4 u32 ID Monitor ID, or

OxFFFFFFFFF for all
owner's monitor.

On success, a becAck[63 is received with no data.

On failure, a beccNack[eh is received. Specific errors:
NACK code Description Extra data

nackNotFound Monitor not found

NOTE: if monitor is running (data stream active), it will be automatically stopped [19).

Query a monitor status
Code: AS + 404

Symbolic: bccMonStatus

This command will query current status of a variable monitor on the connected device.
Request parameters are the following:

Offset Type Label Description
0 u32 OWNER Owner ID
4 u32 ID Monitor ID

On success, a bccAck[6d) is received with the following data:

Offset Type Label Description
0 us STATUS Current monitor
status:

0x00 = Monitor not
defined

© 2025 Robox SpA

192

BCC Communication Protocol v 3.10

Offset Type Label Description

0x01 = Monitor
inactive (but defined,
waiting for start)

0x02 = Monitor active
(data stream active)

0x03 = Monitor
expired (timer WD
denied)

1 ulé6 FREQ Applied (real) data
stream frequency [hz]

On failure, a bccNack[+R is received. Specific errors:
NACK code Description Extra data

nackNotFound Monitor not found on device

Query list of monitors
Code: AS + 405

Symbolic: bccMonlList

This command will query list of defined/active monitor of the owner on the connected
device. Request parameters are the following:

Offset Type Label Description

0 u32 OWNER Owner ID

On success, a bccAck[6 is received with the following data:

Offset Type Label Description
0 U8 N Number of monitor ID
in list
1 u32 IDO Monitor ID 0
u32 ID{N-1} Monitor ID {N-1}
Notes:

e on protocol BCC3 the maximum number N is 63.

On failure, a bccNack[631 is received.

© 2025 Robox SpA

Messages 193

Query monitor statistics

Code: AS + 409

Symbolic: bccMonStatInfo

This command will be used to query general statistical information about all device monitors.
Request parameters are the following:

Offset Type Label Description
0 u32 FLAGS Request flags:
(none)

On success, a bccAck[6l is received with the following data:

Offset Type Label Description

0 u32 FLAGS Statistical flags:
(none)

4 u32 NMAX No. of maximum
monitors (capacity)

8 u32 NDEF No. of defined
monitors

12 u32 NNACT No. of inactive
monitors

16 u32 NACT No. of active monitors

20 u32 NEXP No. of expired
monitors

24 uie SFREQ Suggested data
stream frequency [hz]

26 u32 SWDT Suggested watchdog
time [ms]

On failure, a beccNack[dlis received. Specific errors:

NACK code Description Extra data
nacklllegalArgs Illegal arguments Ul6 What illegal:
1=Flags

Quick monitor
Code: AS + 406

Symbolic: bccMonQuick

This command will query monitor data quickly, only one-shoot request. Request parameters
are the following:

© 2025 Robox SpA

194 BCC Communication Protocol v 3.10

Offset Type Label Description
0 us N Number of variables
(1-25)
1 VAR[o7 VARO Variable def 0
VAR[o VAR1 Variable def 1
VAR o™ VAR{N-1} Variable def N-1
Notes:

e maximum value for N have to be calculate dynamically (maximum 25 var BCC3) . For BCC3
you should calculate that sum of resulting variables sizes is less or equal to 255 bytes.

On success, a bccAck[sl is received containing request data, acccording monitor variable [2s9)
definition.

On failure, a becNacklwdl is received. Specific errors:

NACK code Description Extra data

nackDataOverflow Data for monitor is exceeding
the maximum limit

(for BCC3 is 255 bytes)

nacklllegalArgs Illegal arguments U16 What illegal
1=(unused)
2=Number of variable
10+N=Bad variable {N}
U16 Variable error code
1=Unkown type
2=Bad index
3=Bad address
4=Bad repeat counter

5=Variable data too long

Notes:

e quick monitor can use not initialized variables in reading, but they always have
conventional O value.

Start a monitor
Code: AS + 402

Symbolic: bccMonStart

This command will start the data stream for an existing variable monitor (or all monitor of
the owner) on the connected device. Request parameters are the following:

© 2025 Robox SpA

Messages 195

Offset Type Label Description
0 u32 OWNER Owner ID
4 u32 ID Monitor ID, or

OXFFFFFFFFF for all
owner's monitor.

8 ule6 FREQ Data stream
frequency [hz]

10 u32 WDT Watchdog time [ms]
(initial)

On success, a bccAck[6l is received with the following data:

Offset Type Label Description

0 uié6 FREQ Applied (real) data
stream frequency [hz]

Notes:

e the device can reply with a different frequency than required. In this case you can accept
the new frequency or stop the monitor or try again by changing something in the monitor
definition.

On failure, a beccNack(e4l is received. Specific errors:

NACK code Description Extra data
nackNotFound Monitor not found on device
nacklllegalArgs Illegal parameter U16 What illegal

1=Frequency
2=WD time

After success, you will receive bccDatal 65 message at applied frequency (or less if device
overloaded), with the following data:

Type Label Description
u32 ID Monitor ID
B[] DATA Data according monitor

variable[2e) definition

Notes:

e the PID field for data message is set to 0 when monitor is created and it is incremented
by one after each data transmission (progressive).

Stop a monitor
Code: AS + 403

Symbolic: bccMonStop

© 2025 Robox SpA

196 BCC Communication Protocol v 3.10

This command will to stop the data stream an existing and running variable monitor (or all
monitor of the owner) on the connected device. Request parameters are the following:

Offset Type Label Description
0 u32 OWNER Owner ID
4 u32 ID MonitorID, or

OxFFFFFFFFF for all
owner's monitor.

On success, a becAck[6l is received with no data: the protocol will respond ack even in the
monitor is not started.

On failure, a beccNack[d is received. Specific errors:
NACK code Description Extra data

nackNotFound Monitor not found on device

Watchdog for a monitor

Code: 407

Symbolic: bccMonWd

This message will refresh transmission grant time (monitor watchdog) for specified variable
monitor (or all monitor of the owner) on the connected device. Request parameters are the

following:

Offset Type Label Description

0 u32 OWNER Owner ID

4 u32 ID Monitor ID, or
OxFFFFFFFFF for all
owner's monitor.

8 u32 WDT Watchdog time [ms]

The message has no reply.

Notes:

e if a monitor watchdog is expired and it's definition is yet valid, a bccMonWd will
automatically restart the monitor (like bccMonStart[+eh).

Write a monitor
Code: AS + 408

Symbolic: bccMonWrite

This command will be used to write data to an existing monitor. Request parameters are
the following:

Offset Type Label Description

0 u32 OWNER Owner ID

© 2025 Robox SpA

Messages 197
Offset Type Label Description
4 u32 ID Monitor ID
8 Monitor data (#1)
acccording monitor

variable|2s91 definition

(#1) Due to initial parameter, the maximum data length is reduced to 255-8.

On success, a bccAck[el is received .

On failure, a bccNack[sR is received. Specific errors:

NACK code Description
nackNotFound

nacklllegalArgs

nackReadOnly

nackNotInitialized

Network handling

Illegal arguments

Cant write data

Variable is not initialized

Extra data

Monitor not found on device

Ul6 What illegal:

1=Data size (mismatch)
I32 Item index

132 Item index

These message are used for handling general or specific network interface.

Security handling:
e bceNetloginlz), network login
e bceNetlogoutl200), network logout

Network users handling:

e beccNetUserlistl208, query list of network
users

e bccNetUserCreate 199'1, create a new
network user

e bccNetUserDelete[19d), delete a network
user

e bccNetUserChangelt9d), change a network
user

Netowork client handling:

o bccNetClientList[203, query list of network
clients

e bccNetClientKilll20), kill a network client

Keep alive session handling:

Miscellaneous handling
e bccNetlInfolz0d), query network information

e bceNetStats[20d), query network statistics

General arguments:

o Network interfaces[272)

Notes:

e Commands for network interface handling
always have destination value 3 (field
DST[oM of bcc message), otherwise the
command will be routed to the connected
device.

© 2025 Robox SpA

198 BCC Communication Protocol v 3.10

e bccNetClientkasSessionBegin[xs), begin a
keep-alive session

e bccNetClientKasSessionEnd[208), end a keep-
alive session

e bccNetClientKasSessionInfol2l, query info
for a keep-alive-session

Change a network user
Code: AS + 605

Symbolic: bccNetUserChange

NOTE: this command is preliminary.

This command will change an existing network user settings on the connected network
device: active user must have appropriate permissions in order to perform the request.
Request parameter are the following:

Offset Type Label Description

0 STRZ(16) NAME User name

16 STRZ(16) PASS New user password

32 us8 FLAGS Settings:
0x01 Change
password
0x02 Change
MSGPERMS
0x04 Change
NETPERMS

33 u32 MSGPERMS New message
permission flags

37 u32 MSGMASK Message permission
mask

41 u32 NETPERMS New network
permission flags

45 u32 NETMASK Network permission
mask

Notes:

e Effective changed message and network permission are respectively (MSGPERMS &
MSGMASK) and (NETPERMS & NETMASK), if setting enable them.

On success, a becAck[63 is received with no data.

On failure, a becNack[h is received. Specific errors:

© 2025 Robox SpA

Messages 199

NACK code Description Extra data

nackNotFound User does not exist in
configuration

Create a new network user
Code: AS + 603

Symnolic: bccNetUserCreate

NOTE: this command is preliminary.

This command will add a new network user on the connected network device: active user
must have appropriate permissions in order to perform the request. Request parameter are
the following:

Offset Type Label Description

0 STRZ(16) NAME User name

16 STRZ(16) PASS User password

32 u32 MSGPERMS Message permissions
36 u32 NETPERMS Network permissions

On success, a becAck[63 is received with no data.

On failure, a beccNack[eh is received. Specific errors:

NACK code Description Extra data

nackExists User already exist in
configuration

Delete a network user
Code: AS + 604

Symbolic: bccNetUserDelete

NOTE: this command is preliminary.

This command will delete an existing network user on the connected network device: active
user must have appropriate permissions in order to perform the request. Request
parameter are the following:

Offset Type Label Description

0 STRZ(16) NAME User name

On success, a becAck[63 is received with no data.

On failure, a becNack[h is received. Specific errors:

© 2025 Robox SpA

200 BCC Communication Protocol v 3.10

NACK code Description Extra data

nackNotFound User does not exist in
configuration

Kill a network client

Code: AS + 610

Symbolic: bccNetClientKill

This command will get try to kill a specific client for the connected network device: active
user must have appropriate permission(s) in order to perform the request.

Request parameter are following:
Offset Type Label Description

0 us ID Client ID

On success, a bccAck[63 is received with no data.

On failure, a becNack[eh is received. Specific errors:

NACK code Description Extra data

nackNotFound Client not found or not active

Network login

Code: AS + 600

Symbolic: bccNetLogin

This command will request to authenticate to the current connection (login): according to
network interface settings, if authenticated successfully, you will gain some permission to
communicate (for more information see Network interfaces[273). Request parameters

Offset Type Label Description
0 STRZ(16) USER User name
16 STRZ(16) PASS Password

On success, a becAck[6h is received with no data.

On failure, a beccNackldlis received.

Network logout

Code: AS + 601

Symbolic: bccNetLogut

© 2025 Robox SpA

Messages 201

This command will release an authentication previously gained (bccNetLogin[xd)), so the
connection return to its original state. This command is provided for commodity only and
normally is not used, since when a connection terminate it's authentication is also deleted.

Request has no parameters.
On success, a becAck[16dl is received with no data.

On failure, a bccNackl31 is received.

Query a keep alive session information of a network client
Code: AS + 614

Symbolic: bccNetClientKasSessionInfo

This command will query information about the keep alive session for current network client.
Request has no parameters.

On success, a bccAcklsd is received with following data:

Offset Type Label Description

0 u32 STOUT Keep alive session
effective timeout [ms]

4 u32 STLEFT Session left time
before timeout [ms]
8 u32 STATE State of the session:
0Ox1 TCP client
connected
0x2 Communication
active
0x4 Lost activity
latched
12 STRZ(16) SIP Source IP (client)
28 ulé6 SPORT Source port (client)
30 ulé6 TPORT Target port (device)
32 us TEXTSIZE Field TEXT size
33 STRZ TEXT Session description

Notes:

e The bccNetClientKasSessionInfo command is a session exception and will not renew the
keep-alive timeout.

On failure, a becNacklwdl is received. Specific errors:
NACK code Description Extra data

nackNotFound No keep alive session found

© 2025 Robox SpA

202 BCC Communication Protocol v 3.10

NACK code Description Extra data

nacklllegalContext Illegal context for a keep-
alive-session (e.g. not a
network connection)

Query list of network clients
Code: AS + 609

Symbolic: bccNetClientList

This command will get list of currently client connections for the connected network device:
active user must have appropriate permission(s) in order to perform the request. This is a
standard download transfer sequence[.

REQDATA structure has no data.
ITEMDATA structure is the following:

Offset Type Label Description

0 us ID Client ID

1 STRZ(16) IP Network address (IP,
string)

17 STRZ(16) NAME User name

33 ulé6 PORT Network port

35 FLT TL Time live [s]

39 u32 TXC Message TX total
count

43 u32 RXC Message RX total
count

47 FLT TXF Message TX media

frequency [hz]

51 FLT RXF Message RX media
frequency [hz]

Query list of network users
Code: AS + 602

Symbolic: bccNetUserList

NOTE: this command is preliminary.

This command will get a list of currently configured network users on the connected network
device: active user must have appropriate permissions in order to perform the request. This
is a standard download transfer sequencel 141

REQDATA structure has no data.

© 2025 Robox SpA

Messages 203

ITEMDATA structure is the following:

Offset Type
0 STRZ(16)
16 u32
20 u32

Query network information

Code:

Symbolic:

Label
NAME
MSGPERMS

NETPERMS

AS + 608

bccNetInfo

Description
User name
Message permissions

Network permissions

This command will try to query connected network device information. Request has no

parameters.

On success, a becAck[6d is received with following data:

Offset Type
0 u32
4 u32

Label

TYPE

VERS

On failure, a becNackled is received. Specific errors:

NACK code Description

nackNotFound User does not exist in

configuration

Description

Network device type:

0x00000000 Generic
network device

0x00000001 NET.INT.
expansion board

0x00000002 TCP
server/BCC library

Network device
version (nvMake
format)

More optional data
according TYPE value.

Extra data

For type 0x000000001 (NET.INT. expansion board) following extra data area provided:

Offset Type
8 u32

Label

STSF

Description

Status flags:

0x00000001 running
verbose mode

0x00000002 running
debug mode

© 2025 Robox SpA

204 BCC Communication Protocol v 3.10

Offset Type Label Description

0x00000004 running
no authorization
mode

0x00000008 running
RTAI mode

0x00000010
computing statistics

0x00000020 DP
interface active

0x00000040 TCP
interface active

12 u32 MAXC Maximum number of
TCP clients
16 u32 DPV DP driver version

(nvMake format)

For type 0x00000002 (TCP server/BCC library) following extra data are provided:
Offset Type Label Description

8 u32 STSF Status flags:

0x00000001 running
no authorization

mode
12 u32 MAXC Maximum number of
TCP clients
16 u32 HSWV Host software
versione
20 U8[32] HSWN Host software name

Query network statistics
Code: AS + 611

Symbolic: bccNetStats

This command will try to query connected network device informations. Request has no
parameters.

On success, a bccAck[sl is received with following data:

Offset Type Label Description

0 FLT SuUpP Statistics update
period [s]

4 FLT MFREQ Main frequency [hz]

© 2025 Robox SpA

Messages 205

Offset
8

39

Where the INTF (30 bytes) is defined as:

Offset

+0

+4

+8

+12

+16

+20

Type
us8

INTF

INTF

Type

u32

u32

u32

FLT

FLT

STRZ(10)

Label

NINTF

INTO

INT1

Label

TXC

RXC

ERR

TXF

RXF

NAME

On failure, a beccNackledl is received. Specific errors:

NACK code

nackNotFound

Description

User does not exist in
configuration

Start a keep alive session for a network client

Code:

Symbolic:

AS + 612

Description

No. of following
interface data

Interface 0

Interface 1

Description

Total message
transmitted to
interface

Total message
received from
interface

Total count of
interface errors

Interface outgoing
media frequency [hz]

Interface ingoing
media frequency [hz]

Interface name

Extra data

bccNetClientKasSessionBegin

This command will start a keep alive session for current network client. Request parameter

are the following:

Offset
0
4

Type
u32
u32

Label
FLAG

STOUT

Description
Request flags

Keep alive session
timeout [ms]

(0O=unlimited; #1)

© 2025 Robox SpA

206

BCC Communication Protocol v 3.10

Offset Type
8 us
9 STRZ

Label Description
TEXTSIZE Field TEXT size
TEXT Session description

(#1) Unlimited or the maximum value is decided by the software of the connected device. The
effective value can be obtained with the bccNetClientKasSessionInfolzoh command, in field

STOUT.

On success, a bccAck[el is received with no data.

On failure, a bccNack[sR is received. Specific errors:

NACK code Description Extra data
nacklllegalContext Illegal context for a keep-
alive-session (e.g. not a
network connection)
nacklIllegalArgs Illegal parameter Ul6 What illegal
1=Flags

2=Keep alive timeout

3=Description

nackExists A keep-alive-session is
already active for the client

Stop a keep alive session for a network client

Code:

Symbolic:

AS + 613

bccNetClientKasSessionEnd

This command will stop a keep alive session for current network client. Request has no

parameters.

On success, a becAck[R is received with no data.

On failure, a beccNackledl is received. Specific errors:

NACK code Description Extra data
nackNotFound No keep alive session found
nacklllegalContext Illegal context for a keep-

alive-session (e.g. not a
network connection)

Oscilloscope handling

These messages are used for handling real-time variable oscilloscope for a connected

device.
Oscilloscope handling:

e bccOscCreatel20h, create an oscilloscope

Related arguments:

e Oscilloscope specifications 13

© 2025 Robox SpA

Messages 207

e bccOscDestroyl208), destroy an oscilloscope o Using oscilloscope+a0
e bccOscStart[20d), start an oscilloscope « Using multiple oscilloscope[+a"
e bccOscStop[219), stop an oscilloscope

e bccOscStatus[2!), query an oscilloscope
status

e bccOsclist[212), query list of oscilloscopes

e bccOscStatInfol23), query oscilloscopes
statistics

e bccOscWd[23, watchdog for an oscilloscope

Create an oscilloscope
Code: AS + 420

Symbolic: bccOscCreate

This command will try to create a new variable oscilloscope on the connected device.
Request parameters are the following:

Olffset Type Label Description

0 u32 OWNER Owner identification
1D

4 us N Number of tracks (1-
24)

5 VAR[o VAR1 Data for track 1
variable

15 VAR[o1 VAR2 Data for track 2
variable

VAR 9" VAR{N?} Data for track {N}

variable

Notes:

e The maximum value for N is 24: the size is calculated as 5 + N * 10.

On success, a beccAck[eh is received with the following data:

Offset Type Label Description

0 u3s2 ID Oscilloscope
identification ID

4 us SIZE Total data size,
calculated by device
(must match your
request resulting data
size).

On failure, a becNack[eh is received. Specific errors:

© 2025 Robox SpA

208

BCC Communication Protocol v 3.10

NACK code Description Extra data

nackOutOfResource No more resource to create a
new oscilloscope,

nackDataOverflow Data for monitor is exceeding
the maximum limit

(for BCC3 is 255 bytes)

nacklIllegalArgs Illegal parameter Ul6 What illegal
1=(unused)
2=Field count

10+I=Bad variable {I} (Iis 1-
based)

U16 Variable error code
1=Unknown type
2=Bad index

3=Bad address

4=Bad repeat counter

5=Variable data too long

Notes:

e Don't make any assumption about oscilloscope ID assignment: they are strictly
depending to a specific implementation of the BCC3 protocol and can be both in
sequential or random order.

e Don't make any assumption of oscilloscope definition persistence: if oscilloscope
structures - on a device - run out of space, the specific implementation of the BCC3
protocol can act in different way:

1. Reply with a nackOutOfResouce error.
2. Reuse oscilloscope entries not yet started (older or in an arbitrary order).

e Oscilloscope does not accept multiple value variables, but only those one with single
value: if you need multiple value, consider using a monitor[+ instead.

e All variable value are transmitted as float value so if your query double variables you can
lost precision.

e Oscilloscopes can use not initialized variables in reading, but they always have
conventional 0 value.

Destroy a oscilloscope
Code: AS + 421

Symbolic: bccOscDestroy

This command will try to destroy an existing variable oscilloscope (or all oscilloscope of the
owner) on the connected device. Request parameters are the following:

© 2025 Robox SpA

Messages 209

Offset Type Label Description

0 u32 OWNER Owner identification
ID

4 u32 ID Oscilloscope

identification ID, or
OXFFFFFFFFF for all
owner's oscilloscope.

On success, a bccAck[6h is received with no data.

On failure, a becNackledl is received. Specific errors:

NACK code Description Extra data
nackNotFound Oscilloscope not found
Notes:

e If the oscilloscope is running (data stream active), it will be automatically stopped.

Start an oscilloscope
Code: AS + 422

Symbolic: bccOscStart

This command will try to start an existing variable oscilloscope (or all oscilloscope of the
owner) on the connected device. Request parameters are the following:

Offset Type Label Description

0 u32 OWNER Owner identification
ID

4 u32 ID Oscilloscope

identification ID, or
OXFFFFFFFFF for all
owner's oscilloscope.

8 ule6 FREQ Data stream
frequency [hz]

10 u32 WDT Watchdog time [ms]
(initial)

On success, a bccAck[6d) is received with the following data:

Offset Type Label Description

0 ulé6 FREQ Applied (real) data
stream frequency [hz]

Notes:

e The device can reply with a different frequency than required. In this case you can accept
the new frequency or stop the oscilloscope or try again by changing something in the
oscilloscope definition.

© 2025 Robox SpA

210 BCC Communication Protocol v 3.10

On failure, a beccNackledl is received. Specific errors:

NACK code Description Extra data
nackNotFound Oscilloscope not found
nacklllegalArgs Illegal arguments U16 Error field

1=Frequency
2=WD time

After success, you will receive bccDatal 165 message at applied frequency (or less if device
overloaded), with the following data:

Offset Type Label Description

0 u32 ID Oscilloscope ID

4 us NDS N. of DS structure

5 DS DSO Data of sample 0
wlan

Notes:

e The number of samples (NDS) is decided by the connected device, according with applied
frequency. For example, if the frequency is 200HZ the device can decide to send each
sample with a message at 200HZ or to send two-samples with a message at 100HZ.

This will allow to have high frequency oscilloscope (with few tracks) even over a standard
and limited RS232 device.

Each structure DS (data sample) is defines as follow:

Offset Type Label Description
+0 DBL TIME Absolute acquisition
time [us]
+8 FLT VALO Track 0 value
+12 FLT VAL1 Track 1 value (opz)
ELTI oM VAL{NT-1} Track NT value (opz)
Notes:

e The number of effective track values is the same of number of tracks (NT) in oscilloscope
creation with bccOscCreatel[20M.

e The PID field for data message is set to 0 when oscilloscope is created and it is
incremented by one after each data transmission (progressive).

Stop an oscilloscope
Code: AS + 423

Symbolic: bccOscStop

© 2025 Robox SpA

Messages 21

This command will try to stop an existing and running variable oscilloscope (or all
oscilloscope of the owner) on the connected device. Request parameters are the following:

Offset Type Label Description

0 u32 OWNER Owner identification
ID

4 u32 ID Oscilloscope

identification ID, or
OXFFFFFFFFF for all
owner's oscilloscope.

On success, a beccAck[6d is received with no data: the protocol will respond ack even in the
oscilloscope is not started.

On failure, a bccNack[+R is received. Specific errors:

NACK code Description Extra data

nackNotFound Oscilloscope not found

Query an oscilloscope status

Code: AS + 424

Symbolic: bccOscStatus

This command will query current status of a variable oscilloscope on the connected device.
Request parameters are the following:

Offset Type Label Description

0 u32 OWNER Owner identification
ID

4 u32 ID Oscilloscope

identification ID

On success, a beccAck[6h is received with the following data:

Offset Type Label Description

0 us8 STATUS Current status:
0x00 = Oscilloscope
not defined

0x01 = Oscilloscope
inactive (but defined,
waiting for start)

0x02 = Oscilloscope
active (data stream
active)

0x03 = Oscilloscope
expired (timer WD
denied)

© 2025 Robox SpA

212 BCC Communication Protocol v 3.10

Offset Type Label

1 u16 FREQ

On failure, a beccNack[ed is received. Specific errors:

NACK code Description

nackNotFound Oscilloscope not found

Query list of oscilloscopes
Code: AS + 424

Symbolic: bccOscStatus

Description

Applied (real) data
stream frequency [hz]

Extra data

This command will query current status of a variable oscilloscope on the connected device.

Request parameters are the following:

Offset Type Label
0 u32 OWNER
4 u32 ID

On success, a bccAck[6h is received with the following data:

Offset Type Label
0 us STATUS
1 uie6 FREQ

On failure, a becNack[®h is received. Specific errors:

NACK code Description

nackNotFound Oscilloscope not found

Description

Owner identification
ID

Oscilloscope
identification ID

Description

Current status:

0x00 = Oscilloscope
not defined

0x01 = Oscilloscope
inactive (but defined,
waiting for start)

0x02 = Oscilloscope
active (data stream
active)

0x03 = Oscilloscope
expired (timer WD
denied)

Applied (real) data
stream frequency [hz]

Extra data

© 2025 Robox SpA

Messages 213

Query oscilloscopes statistics
Code: AS + 426

Symbolic: bccOscStatInfo

This command will be used to query statistical information about all device oscilloscopes.
Request parameters are the following:

Offset Type Label Description
0 u32 FLAGS Request flags:
(none)

On success, a bccAck[6l is received with the following data:

Offset Type Label Description

0 u32 FLAGS Statistical flags:
(none)

4 u32 NMAX No. of maximum
oscilloscopes
(capacity)

8 u32 NDEF No. of defined
oscilloscopes

12 u32 NNACT No. of inactive
oscilloscopes

16 u32 NACT No. of active
oscilloscopes

20 u32 NEXP No. of expired
oscilloscopes

24 ulé6 SFREQ Suggested data
stream frequency [hz]

26 u32 SWDT Suggested watchdog
time [ms]

On failure, a becNackldl is received. Specific errors:

NACK code Description Extra data
nacklllegalArgs Illegal param U1l6 What illegal:
1=Flags

Watchdog for an oscilloscope
Code: 427

Symbolic: bccOscWd

© 2025 Robox SpA

214

BCC Communication Protocol v 3.10

This message will refresh transmission grant time (oscilloscope watchdog) for specified
variable oscilloscope (or all oscilloscope of the owner) on the connected device. Request
parameters are the following:

Offset Type Label Description

0 u32 OWNER Owner identification
ID

4 u32 ID Oscilloscope

identification ID, or
OXFFFFFFFFF for all
owner's oscilloscope.

8 u32 WDT Watchdog time [ms]

The message has no reply.
Notes:

e If an oscilloscope watchdog is expired and it's definition is yet valid, a bccOscWd will
automatically restart the oscilloscope (like bccOscStart[20)).

Protocol handling
These messages are used for general protocol handling and protocol diagnostics.

Ping/pong testing: Related arguments:
e bccPing[213), Ping command Routing counters[21)
e bccPongl2®), Ping answer Communication timings/ze).

Protocol debug:
e bccDebugCmd|214), Debug command

Debug command
Code: AS + 35

Symbolic: bccDebugCmd

WARNING: this command is intended only for diagnostic use by Robox SpA.

Send a debug command to the connected device. Request data area is the following:

Type Label Description
u32 CMD Debug command
B[] DATA Extra data (optional) can be

appended, according CMD
value and its implementation.

On success, a becAck[6d) is received with following (opt) data:

© 2025 Robox SpA

Messages 215

Type Label Description

B[] DATA Data (optional) return as
command result

On failure, a beccNackled is received.

Ping answer

Code: 39

Symbolic: bccPong

This message is used as answer to request message bccPinglz31and contain reply data as
follow:

Type Label Description

u32 DATA Original ping data

u32 TXHOPS Number of transmission hops
u32 RXHOPS Number of receiving hops
Notes:

e It is best practice to always initialize RXHOPS with value of 1.

Ping command
Code: AS + 38

Symbolic: bccPing

Send a ping request to discover communication timings. Request data area is the following:

Type Label Description

u32 DATA Ping user data

u32 TXHOPS Number of transmission hops
Notes:

e It is best practice to always initialize TXHOPS with value of 1.
On success, a bccPong[218) is received (see below for details).

On failure, a beccNack[h is received.

Routing counters

The hop counter is used to count how many time a message have to be routed before
reaching is destination.

By initializing it to value 1, each type that the message is routed, the hop counter is
incremented: when message bccPongl2i®) return, the hops counters give you an exact count
of transmission cost.

© 2025 Robox SpA

216 BCC Communication Protocol v 3.10

Communication timings

By using appropriate information in DATA field of bccPing[218) message, you can evaluate
communication timing.

For example if you place current time [ms] in DATA of bccPing [213), where you well receive the
bccPongl2151 by the difference of current time [ms] and the value in returned DATA, you will
obtain the elapsed time between transmission of bccPingl2151 and receiving of bccPong[2i)
(this is possible because the DATA field of bccPing[2151 message is replicated into DATA field
of bccPong[213).

Register handling

NOTE: although defined and used on some hardware Robox device, these command are
declared deprecated and are not supported by RTE: we suggest to use variables [2)
instead.

These messages are used getting and setting register value for a connected device.
Get commands: Set commands:

e bccGetR16[218), get 16bit integer register o bccSetR16[2N, set 16bit integer register
bccGetR32[21R, get 32bit integer register bccSetR32[223, set 32bit integer register
bccGetRRI219), get real register (double) e bccSetRR[2:3), set real register (double)
bccGetRRF[218), get real register (float) bccSetRRF[222), set real register (float)

bccGetSRI[20), get string register bccSetSRI224), set string register

Get 16bit integer register
Code: AS + 300

Symbolic: bccGetR16

|NOTE: this command is not supported in RTE firmware.

|NOTE: This register is referred to the volatile register set.

This command will get value for multiple 16bit integer register. Request parameters are the

following:

Offset Type Label Description

0 us8 REP Number of required
registers

1 uie INDEX Index of first register
(see your
hardware/OSF
documentation for
valid register index
values)

Notes:

e The maximum value for REP in BCC3 is 127.

© 2025 Robox SpA

Messages 217

On success, a bccAck[64l is received with the following data:

Offset Type Label Description

0 I16 VALUEO Value of register
(INDEX+0)

2 116 VALUE1 Value of register
(INDEX+1)

4

Notes:

e The data size is calculated as 2 bytes * REP.

On failure, a becNackl 4l is received. Specific errors:

NACK code Description Extra data

nacklllegalArgs Illegal parameter Ul6 What illegal
1=Repeat
2=Index

Get 32bit integer register
Code: AS + 302

Symbolic: bccGetR32

|NOTE: this command is not supported in RTE firmware.

|NOTE: This register is referred to the volatile register set.
This command will get value for multiple 32bit integer register. Request parameters are the

following:

Offset Type Label Description

0 us8 REP Number of required
registers

1 ule6 INDEX Index of first register
(see your
hardware/OSF
documentation for
valid register index
values)

Notes:

e The maximum value for REP in BCC3 is 63.

On success, a bccAckl®h is received with the following data:

© 2025 Robox SpA

218

BCC Communication Protocol v 3.10

Offset Type Label Description

0 132 VALUEO Value of register
(INDEX+0)

4 132 VALUE1 Value of register
(INDEX+1)

8

Notes:

e The data size is calculated as 4 bytes * REP.

On failure, a beccNack[d is received. Specific errors:

NACK code Description Extra data

nacklllegalArgs Illegal parameter U16 What illegal
1=Repeat
2=Index

Get float register
Code: AS + 306

Symbolic: bccGetRRF

|NOTE: this command is not supported in RTE firmware.

|NOTE: This register is referred to the volatile register set.

This command will get value for multiple real register (in float precision, 32bit). Request
parameters are the following:

Offset Type Label Description

0 us8 REP Number of required
registers

1 ulé6 INDEX Index of first register
(see your
hardware/OSF

documentation for
valid register index

values)

Notes:

e The maximum value for REP in BCC3 is 63.

On success, a bccAck[6d is received with following data:

Offset Type Label Description

0 FLT VALUEO Value of register
(INDEX+0)

© 2025 Robox SpA

Messages 219

Offset Type Label

4 FLT VALUE1
8

Notes:

e The data size is calculated as 4 bytes * REP.

On failure, a beccNack[ed is received. Specific errors:

NACK code Description

nacklllegalArgs Illegal parameter

Get real register
- (double) (deprecated)

Code: AS + 304

Symbolic: bccGetRR

|NOTE: this command is not supported in RTE firmware.

|NOTE: This register is referred to the volatile register set.

Description

Value of register
(INDEX+1)

Extra data

Ul6 What illegal
1=Repeat
2=Index

This command will get value for multiple real register (in double precision, 64bit). Request

parameters are the following:

Offset Type Label
0 us REP

1 uie INDEX
Notes:

e The maximum value for REP in BCC3 is 31.

On success, a bccAcklsl is received with following data:

Offset Type Label

0 DBL VALUEO

Description

Number of required
registers

Index of first register

(see your
hardware/osf
documentation for
valid register index
values)

Description

Value of register
(INDEX+0)

© 2025 Robox SpA

220 BCC Communication Protocol v 3.10

Offset Type Label

8 DBL VALUE1
16

Notes:

e The data size is calculated as 8 bytes * REP.
On failure, a beccNack[ed is received. Specific errors:

NACK code Description

nacklllegalArgs Illegal parameter

Get string register

Code: AS + 308

Symbolic:

|NOTE: this command is not supported in RTE firmware.

|NOTE: This register is referred to the volatile register set.

bccGetSR

Description

Value of register
(INDEX+1)

Extra data
Ul6 What illegal
1=Repeat

2=Index

This command will get value for a single string register. Request parameters are the

following:
Offset Type Label
0 uie INDEX

On success, a bccAck[6h is received with following data:

Offset Type Label
0 STRZ VALUE

On failure, a becNack[®h is received. Specific errors:

NACK code Description

nacklllegalArgs Illegal parameter

Description

Index of string
register

(see your
hardware/osf
documentation for
valid register index
values)

Description

String value (0
termined)

Extra data

Ul6 What illegal:

1=Index

© 2025 Robox SpA

Messages 221

Set 16bit integer register

Code:

Symbolic:

|NOTE: this command is not supported in RTE firmware.

|NOTE: This register is referred to the volatile register set.

AS + 301

bccSetR16

This command will set value for multiple 16bit integer register. Request parameters are the

following:
Offset

0

7

Notes:

Type
us8

ule

I16

I16

Label

REP

INDEX

VALUEO

VALUE1

e The maximum value for REP in BCC3 is 126.

e The data size is calculated as 3 bytes + (2 bytes * REP)

On success, a becAck[6h is received without data.

On failure, a beccNackldl is received. Specific errors:

NACK code

nackReadOnly

nackMissingArgs

nacklllegalArgs

Description

Register read-only or
predefined

One or more parameter

missing

Illegal parameter

Description

Number of required
registers

Index of first register

(see your
hardware/OSF
documentation for
valid register index
values)

Value for register
(INDEX+0)

Value for register
(INDEX+1)

Extra data

U16 Error value index (from O
to REP-1)

U16 What illegal
1=Repeat
2=Index

© 2025 Robox SpA

222 BCC Communication Protocol v 3.10

Set 32bit integer register
Code:

Symbolic:

|NOTE: this command is not supported in RTE firmware.

|NOTE: This register is referred to the volatile register set.

AS + 303

bccSetR32

This command will set value for multiple 32bit integer register. Request parameters are the

following:

Offset Type
0 us

1 ule
3 132

7 132

11

Notes:

Label

REP

INDEX

VALUEO

VALUE1

e The maximum value for REP in BCC3 is 63.

e The data size is calculated as 3 bytes + (4 bytes * REP)

On success, a becAck[6h is received without data.

On failure, a beccNackldl is received. Specific errors:

NACK code

nackReadOnly

nacklllegalArgs

Set float register
Code:

Symbolic:

NOTE: this command is not supported in RTE firmware.

Description

Register read-only or
predefined

Illegal paramter

AS + 307

bccSetRRF

Description

Number of required
registers

Index of first register

(see your
hardware/osf
documentation for
valid register index
values)

Value for register
(INDEX+0)

Value for register
(INDEX+1)

Extra data

U16 Error value index (from O
to REP-1)

Ul6 What illegal
1=Repeat
2=Index

© 2025 Robox SpA

Messages 223

NOTE: This register is referred to the volatile register set.

This command will set value for multiple real register (in float precision, 32bit). Request

parameters are the following:

Offset
0

11

Notes:

e The maximum value for REP in BCC3 is 63.

e The data size is calculated as 3 bytes + (4 bytes * REP)

Type
us

uleé

FLT

FLT

Label

REP

INDEX

VALUEO

VALUE1

On success, a bccAck[6d) is received without data.

On failure, a becNack[d is received. Specific errors:

NACK code

nackReadOnly

nacklllegalArgs

Set real register
Code:

Symbolic:

|NOTE: this command is not supported in RTE firmware.

|NOTE: This register is referred to the volatile register set.

Description

Register read-only or
predefined

Illegal parameter

AS + 305

bccSetRR

Description

Number of required
registers

Index of first register

(see your
hardware/OSF
documentation for
valid register index
values)

Value for register
(INDEX+0)

Value for register
(INDEX+1)

Extra data

U16 Error value index (from 0
to REP-1)

Ul6 What illegal
1=Repeat
2=Index

This command will set value for multiple real register (in double precision, 64bit). Request

parameters are the following:

© 2025 Robox SpA

224 BCC Communication Protocol v 3.10

Offset
0

11

19

Notes:

e The maximum value for REP in BCC3 is 31.

e The data size is calculated as 3 bytes + (8 bytes * REP)

Type
us8

ule

DBL

DBL

Label

REP

INDEX

VALUEO

VALUE1

On success, a becAck[63 is received without data.

On failure, a beccNack[d is received. Specific errors:

NACK code

nackReadOnly

nacklllegalArgs

Set string register

Code:

Symbolic:

|NOTE: this command is not supported in RTE firmware.

|NOTE: This register is referred to the volatile register set.

Description

Register read-only or

predefined

Illegal parameter

AS + 309

bccSetSR

Description

Number of required
registers

Index of first register

(see your
hardware/OSF
documentation for
valid register index
values)

Value for register
(INDEX+0)

Value for register
(INDEX+1)

Extra data

U16 Error value index (from O
to REP-1)

U1l6 What illegal
1=Repeat
2=Index

This command will set value for a single string register. Request parameters are the

following:
Offset

0

Type
ule6

Label

INDEX

Description

Index of string
register

© 2025 Robox SpA

Messages 225

Offset Type Label Description

2 STRZ VALUE String value (0
termined)

Notes:

e The data size is calculated as 2 bytes + len(VALUE) + 1
On success, a becAck[6R is received without data.

On failure, a beccNackldl is received. Specific errors:

NACK code Description Extra data
nackReadOnly Register read-only or
predefined
nacklllegalArgs Illegal arguments U16 Whatillegal
1=Repeat
2=Index

Report handling

These messages are used handling report (standard and system specific) for the connected
device.

Standard report handling: System report handling:

e bccReportinfolz), query report information bccSysReportinfolsf, query system report

information
e bccReportlist[22h, get report contents

bccSysReportList[28), get system report

o bccReportCmd(23), command for report contents
bccSysReportCmd[228), command for system
report

Command for report

Code: AS + 732

Symbolic: bccReportCmd

This command will send a command to report on the remote device. Request has following
parameters:

Offset Type Label Description

0 u32 FLAGS Command flags:

0x00000001 Clear
report

0x00000002 Set
report size

0x00000004 Set 'up
to fill' mode

© 2025 Robox SpA

226 BCC Communication Protocol v 3.10

Offset Type Label Description

0x00000008 Set
'round' mode

0x00000010 Set
acquisition mask

4 u32 SIZE New report size (no.
of item), if bit enabled

8 uleé AMSK New report
acquisition mask.

On success, a becAck[6d is received with no data.

On failure, a becNack[eh is received. Specific errors:

NACK code Description Extra data
nacklllegalArgs Illegal parameter U1l6 Whatillegal:
1=Flags
2=Size
3=Mask
nackReadOnly Report is readonly and is not
modificable.

Command for system report
Code: AS + 735

Symbolic: bccSysReportCmd

This command will send a command to system report on the remote device. Request has
following parameters:

Offset Type Label Description

0 u32 FLAGS Command flags:
0x00000001 Clear
report

0x00000002 Set
system report size

0x00000004 Set 'up
to fill' mode

0x00000008 Set
'round' mode

0x00000010 Set
acquisition mask

4 u32 SIZE New system report
size (no. of item), if bit

© 2025 Robox SpA

Messages 227

Offset Type

8 ule

Label

AMSK

On success, a becAck[6dl is received with no data.

On failure, a beccNack[d is received. Specific errors:

NACK code

nacklllegalArgs

nackReadOnly

Get report contents
Code:

Symbolic:

Description

Illegal parameter

System report is readonly
and is not modificable.

AS + 731

bccReportList

Description
enabled

New system report
acquisition mask.

Extra data

U16 What illegal:
1=Flags

2=Size

3=Mask

This command will get complete (or partial) contents of the report from the remote device.:
this is a standard download transfer sequence[".

REQDATA structure is the following:

Offset Type
0 u32
4 u32
8 u32

Label

FROMID

TOID

NITEM

ITEMDATA structure is the following:

Offset Type
0 u32
4 DBL
12 uie

Label
ID

TIME

SMSK

Description

First report item ID
required

Last report item ID
required

No. of report items
(0=all available)

Description
Report item ID

Item generation time
[us]

Source mask:
0x0000 Generic

© 2025 Robox SpA

228 BCC Communication Protocol v 3.10

Offset Type Label Description

0x0001 RTE/RRT
0x0002 OS
0x0004 Fieldbus
0x0008 (reserved)
0x0010 (reserved)

Ox00EO Item
category:

0x00 generic
0x20 information
0x40 warning

0x80
fault/emergency

0x0100 (user)
0x0200 (user)
0x0400 (user)
0x0800 (user)
0x1000 (user)
0x2000 (user)
0x4000 (user)
0x8000 (user)

14 STRZ TEXT Item text

As general, you can get items with the following order:

o from OLDID to NEWID for native order.

e from NEWID to OLDID for reversed order.

When using RTE version v33.16.x (or lower) you should consider two different cases:
1. NEWID is greater/equal than OLDID.

2. NEWID is less than OLDID.

In case 1, you can get items with a single request, as:

e from OLDID to NEWID for native order.

e from NEWID to OLDID for reversed order.

In case 2, you must get items with two different request, as:

e from OLDID to OXFFFFFFFF and from O to NEWID for native order.

o form NEWID to 0 and from OxFFFFFFFF to OLDID for reversed order.

Get system report contents
Code: AS + 734

© 2025 Robox SpA

Messages 229

Symbolic: bccSysReportList

This command will get complete (or partial) system report history from the remote device.:
this is a standard download transfer sequence[\.

REQDATA structure is the following:

Offset Type Label Description

0 u32 FROMID First system report
item ID required

4 u32 TOID Last system report
item ID required

8 u32 NITEM No. of system report
items (O=all available)

ITEMDATA structure is the following:

Offset Type Label Description

0 u32 ID System report item ID

4 DBL TIME Item generation time
[us]

12 uile SMSK Source mask:

0x0000 Generic
0x0001 RTE/RRT
0x0002 OS
0x0004 Fieldbus
0x0008 (reserved)
0x0010 (reserved)

Ox00EOQ Item
category:

0x00 generic
0x20 information
0x40 warning

0x80
fault/emergency

0x0100 (user)
0x0200 (user)
0x0400 (user)
0x0800 (user)
0x1000 (user)
0x2000 (user)
0x4000 (user)
0x8000 (user)

© 2025 Robox SpA

230

BCC Communication Protocol v 3.10

Offset Type Label Description

14 STRZ TEXT Item text

As general, you can get items with the following order:

e from OLDID to NEWID for native order.

o from NEWID to OLDID for reversed order.

When using RTE version v33.16.x (or lower), you should consider two different cases:
1. NEWID is greater/equal than OLDID.

2. NEWID is less than OLDID.

In case 1, you can get items with a single request, as:

e from OLDID to NEWID for native order.

o from NEWID to OLDID for reversed order.

In case 2, you must get items with two different request, as:

e from OLDID to OXFFFFFFFF and from O to NEWID for native order.

e form NEWID to 0 and from OxFFFFFFFF to OLDID for reversed order.

Query report information
Code: AS + 730

Symbolic: bccReportInfo

This command will query information about report on the remote device. Request has no
parameters.

On success, a bccAck[6d is received with following data:

Offset Type Label Description

0 u32 OLDID Oldest report item ID

4 u32 NEWID Newest report item ID
8 u32 NITEM No. of report items (in

range from OLDID to
NEWID, all included)

12 u32 SIZE Report size (no. of
storable items)

16 u32 REPID Report content ID

On failure, a becNack[#h is received.
Report handling is based on the following statements:

e Item ID are allocated progressively, with an exception: at value OxFFFFFFFF, next valid ID
will be 0.

e The no. of items from OLDID and NEWID will be calculated as: if NEWID great or equal

than OLDID maximum no. is (NEWID - OLDID + 1), otherwise is ((OXFFFFFFFF - OLDID + 1)
+ NEWID + 1).

© 2025 Robox SpA

Messages 231

Query system report information

Code:

Symbolic:

AS + 733

bccSysReportInfo

This command will query information about system report on the remote device. Request

has no parameters.

On success, a bccAck[6d is received with following data:

Offset
0

12

16

On failure, a beccNackledlis received.

System report handling is based on the following statements:

Type

u32

u32

u32

u32

u32

Label

OLDID

NEWID

NITEM

SIZE

REPID

Description

Oldest system report
item ID

Newest system report
item ID

No. of system report
items (in range from
OLDID to NEWID, all
included)

System report size
(no. of storable items)

System report content
ID

e Item ID are allocated progressively, with an exception: at value OxXFFFFFFFF, next valid ID

will be 0.

e The no. of items from OLDID and NEWID will be calculated as: if NEWID great or equal
than OLDID maximum no. is (NEWID - OLDID + 1), otherwise is ((0OxFFFFFFFF - OLDID + 1)

+ NEWID + 1).

RPE handling

These messages are used for general handling of the RPE extension of RTE.

Axes group handling:

e bccRpeAxesGroupResolve[24d), resolve an axes group
e bccRpeAxesGrouplnfolz:), get information for an axes group

e bccRpeAxesGrouplist[zad), list available axes groups

e bccRpeAxesGroupPositions[23h, query positions for an axes group

Group Authority session handling:
e bccRpeGASessionBegin[z33), begin a Group Autority session
e bccRpeGASessionEndl[2a8), end a Group Autority session

© 2025 Robox SpA

232

BCC Communication Protocol v 3.10

e bccRpeGASessionWd[248), send watchdog a Group Autority session

e bccRpeGASessionObjload[z41), load an object to a Group Authority session

e bccRpeGASessionObjSavel2s3), save an object from a Group Authority session

e bccRpeGASessionObjStatus(z43), query status for a object in a Group Authority session
e bccRpeGASessionObjCmdl[2s3), command for an object in a Group Autority session

e bccRpeGASessionJogCmd[238), JOG command for an object in a Group Autority session

e bccRpeGASessionUpdateObjPointP[247, update positions for an object's point in a Group
Autority session

e bccRpeGASessionUpdateObjSteplInlinePointP[24), update positions for an object's step
inline point in @ Group Autority session

Begin a group authority session
Code: AS + 1100

Symbolic: bccRpeGASessionBegin

This command will begin a new group authority session for a specified axes group. Request
parameters are the following:

Offset Type Label Description

0 u32 FLAGS Session flags:
(none)

4 u32 GID Axes group ID

8 u32 WDT Watchdog time [ms]

(initial value)

12 U8[8] SAK Security Authorization
Key (contact Robox
SPA for more
information)

On success, a beccAck[6d) is received with following data:

Offset Type Label Description
0 u32 SESSID Session ID
4 u32 MAXWDT Maximum allowed

watch dog time [ms]
(0O=any value)

On failure, a beccNack[d is received. Specific errors:

NACK code Description Extra data
nackMissingArgs Missing arguments
nacklllegalArgs Illegal arguments Ul6 What illegal:

1=Request flags

© 2025 Robox SpA

Messages 233

NACK code Description Extra data

2=Axes group ID

nackNotFound Axes group not found
nackRpeNotlInstalled RPE firmware is not installed
nackNotAuthorized Operation not authorized

Command for an object in a group autority session
Code: AS + 1106

Symbolic: bccRpeGASessionObjCmd

This command will send a specific command to a object in a Group Authority session on the
connected device. Request parameters are the following:

Offset Type Label Description
0 u32 SESSID Session ID
4 uie6 OBIJTYPE Object type:

1=Running PLIB
2=Testing PLIB

6 u32 CMD Command:

1=Set current:
PO=Path ID, P1=Step
ID

2=Start
3=Stop
4=Hold
5=Unhold
6=Step

7=Step to: PO=Path
ID, P1=Step ID

8=Move to point:
PO=Point ID

9=Move to inline
point: PO=Path ID,
P1=Step ID, P2=Point
index

10 u32 CMDF Command flags:

0Ox1 Backward
direction (#1)

0x2 Initial position

14 u32 PO Parametro 0 (opz)

© 2025 Robox SpA

234

BCC Communication Protocol v 3.10

Offset Type Label Description
18 u32 P1 Parametro 1 (opz)
22 u32 p2 Parametro 2 (opz)

(#1) If CMDF flag Ox1 "Backward direction" is not specified, the "Forward direction" is assumed
as default.

On success, a becAck[63 is received with the no data.

On failure, a beccNackl 4l is received. Specific errors:

NACK code Description Extra data
nackMissingArgs Missing arguments
nacklllegalArgs Illegal arguments U16 What illegal:

1=Session ID
2=0bject type
3=Command

4=Command flags

5=P0
6=P1
7=P2
nackNotFound Session not found
nackBusy Session is busy, cannot
execute the command
nackRpeNotlInstalled RPE firmware is not installed
nackNotAuthorized Operation not authorized
End a group authority session
Code: AS +1101
Symbolic: bccRpeGASessionEnd

This command will end the specified existing group authority session on the connected
device. Request parameters are the following:

Offset Type Label Description

0 u32 SESSID Session ID

On success, a becAck[6d is received with no data:

On failure, a becNacklh is received. Specific errors:

NACK code Description Extra data

nackMissingArgs Missing arguments

© 2025 Robox SpA

Messages 235

NACK code

nacklIllegalArgs

nackNotFound
nackRpeNotInstalled

nackNotAuthorized

Description Extra data
Illegal arguments Ul6 What illegal:
1=Session ID

Session not found
RPE firmware is not installed

Operation not authorized

Get information for an axes group

Code:

Symbolic:

AS + 1001

bccRpeAxesGroupInfo

This command will get information about an existing axes group of the connected device.

Request parameters are the following:

Offset Type Label
0 u32 FLAGS
4 u32 GID

On success, a bccAckl6d is received with following data:

Offset Type Label

0 u32 GID

4 u32 FLAGS

8 u32 MIMODEL
12 u32 JCMODEL

Description

Request flags:
(none)

Axes group ID

Description
Axes group ID (#1)

Axes group flags

(none)

Associated MJ model:
0=None

1=User defined
2=Bridge crane
3=Cross YZ

4=Cross generic
5=Custom 1
6=Custom 2
7=Custom 3

8=Linear parametric

Associated JC model:

0=Cartesian

© 2025 Robox SpA

236

BCC Communication Protocol v 3.10

Offset

16

20

22

26

27

Type

u32

uleé

u32

us

STRZ

Label

PSETID

ECMASK

EJMASK

NAMESIZE

NAME

Description

1=User defined
2=Scara XY
3=Scara XYZ
4=Scara XYZW
5=Anthropomorph 1
6=Anthropomorph 2
7=Cylindric

8=Delta Robot
9=Custom 1
10=Custom 2
11=Custom 3
12=Anthropomorph 3

Associated power set
ID

Enabled cartesian
axes mask:

0x1 X
0x2'Y
0x4 Z
0x8 A
0x10 B
0x20 C

Enabled joint axes
mask:

0x1 11
0x2 J2

0x10000000 329
0x20000000 130

Size for field NAME (\O
termination included)

Axes group name

(#1) Field GID repeated for compatibility with bccRpeAxesGrouplList reply message format.

On failure, a becNack[wd is received. Specific errors:

NACK code

nackMissingArgs

Description

Missing arguments

Extra data

© 2025 Robox SpA

Messages 237

NACK code Description Extra data
nacklllegalArgs Illegal arguments Ul6 What illegal:
1=Flags

2=Axes group ID
nackNotFound Axes group not found

nackRpeNotInstalled RPE firmware is not installed

Get positions for an axes group
Code: AS + 1003

Symbolic: bccRpeAxesGroupPositions

This command will get positions information for the specified axes group of the connected
device. Request parameters are the following:

Offset Type Label Description

0 u32 FLAGS Request flags:
(none)

4 u32 GID Axes group ID

On success, a becAck[6d is received with following data:

Offset Type Label Description

0 u32 FLAGS Flags
(none)

4 us OPMODE Axes group operating
mode:
0 = Disabled

1 = Missing power
2 = Manual

3 = Execution

4 = CO wait

5 = CO execution

6 = Manual (before
C0)

7 = Passive

5 us - (reserved)
6 u32 STATE Axes group state:
0x1 Axes in

deceleration

© 2025 Robox SpA

238 BCC Communication Protocol v 3.10

Offset Type Label Description

0x2 Axes in position
0x4 Axes on hold
0x8 Axes on stop

0x10 Axes on
emergency stop

0x20 Cartesian
movement active

10 FLT CP[6] Cartesian positions

34 FLT JP[30] Joint positions

On failure, a becNack[eh is received. Specific errors:

NACK code Description Extra data
nackMissingArgs Missing arguments
nacklllegalArgs Illegal arguments Ul6 What illegal:

1=Request flags
2=Axes group ID

nackNotFound Axes group not found

nackRpeNotlInstalled RPE firmware is not installed

Jog command for an object in a group autority session
Code: AS + 1107

Symbolic: bccRpeGASessionJogCmd

This command will send a specific JOG command to a object in a Group Authority session on
the connected device. Request parameters are the following:

Offset Type Label Description
0 u32 SESSID Session ID
4 ulé6 OBJTYPE Object type:

1=Running PLIB
2=Testing PLIB

6 us8 TYPE Jog type:
1=Joint

2=Cartesian
(absolute)

3=Cartesian (tool)

7 U8 = (reserved)

© 2025 Robox SpA

Messages 239

Offset Type Label Description

8 u32 PMASK Mask of axes for
JOG[+]

12 u32 MMASK Mask of axes for
JOG[-]

16 u32 WDT Comand watchdog
time [ms]

20 u32 FLAGS Flags:
0x1=Slow speed
(10%)

0x2=Snap to grid
0x4=Single step

On success, a becAck[6R is received with the no data.

On failure, a beccNacklwedl is received. Specific errors:

NACK code Description Extra data

nackMissingArgs Missing arguments

nacklllegalArgs Illegal arguments Ul6 What illegal:
1=Session ID

2=0bject type

3=]0G type
4=]JO0G+ mask
5=]J0G- mask
6=Watchdog time
7=Flags

nackNotFound Session not found

nackBusy Session is busy, cannot

execute the command

nackRpeNotInstalled RPE firmware is not installed

nackNotAuthorized Operation not authorized

List available axes groups

Code: AS + 1002

Symbolic: bccRpeAxesGrouplList

This command will list all available axes groups of the connected device: this is a standard
download transfer sequence[.

© 2025 Robox SpA

240 BCC Communication Protocol v 3.10

REQDATA structure is the following:

Offset Type Label Description
0 u32 FLAGS Request flags:
(none)

If initial request fails, bccNack[+d) is received. Specific errors

NACK code Description Extra data

nacklllegalArgs Illegal parameters Ul6 What illegal:
1=Flags

nackRpeNotInstalled RPE firmware is not installed

ITEMDATA structure is the following:

Offset Type Label Description

0 u32 GID Axes group ID

4 u32 FLAGS Axes group flags
(none)

8 u32 MIMODEL Associated MJ model:
0=None

1=User defined
2=Bridge crane
3=Cross YZ
4=Cross generic
5=Custom 1
6=Custom 2
7=Custom 3

8=Linear parametric

12 u32 JCMODEL Associated JC model:
0=Cartesian
1=User defined
2=Scara XY
3=Scara XYZ
4=Scara XYZW
5=Anthropomorph 1
6=Anthropomorph 2
7=Cylindric
8=Delta Robot
9=Custom 1
10=Custom 2

© 2025 Robox SpA

Messages 241

Offset Type Label Description

11=Custom 3
12=Anthropomorph 3

16 u32 PSETID Associated power set
ID

20 uié6 ECMASK Enabled cartesian
axes mask:

0x1 X
0x2Y
0x4 Z
0x8 A
0x10 B
0x20 C

22 u32 EJMASK Enabled joint axes
mask:

0x1 J1
0x2 12

0x10000000 J29
0x20000000 J30

26 us NAMESIZE Size for field NAME (\O
termination included)

27 STRZ NAME Axes group hame

Load an object to a group authority session
Code: AS + 1103

Symbolic: bccRpeGASessionObjLoad

This command will load an object to a group authority session on the connected device. this
is a standard data load sequence[+\.

REQDATA structure is the following:

Offset Type Label Description

0 u8[16] - (reserved, see data
load sequence
specifications)

16 u32 FLAGS Operation flags:
(none)
20 u32 SESSID Session ID

© 2025 Robox SpA

242 BCC Communication Protocol v 3.10

Offset Type Label Description

24 uie OBIJTYPE Object type:
1=Running PLIB
2=Testing PLIB

On success, a bccAck[sl is received with at least the following data (ACKDATA):

Offset Type Label Description

0 U8[16] - (reserved, see data
load sequence
specifications)

If initial request fails, bccNack[+ed) is received. Specific errors

NACK code Description Extra data
nacklllegalArgs Illegal parameter Ul6 What illegal:
1=Size
2=Flags
3=Session ID

4=0bject type

nackNotFound Session not found
nackRpeNotInstalled RPE firmware is not installed
nackNotAuthorized Operation not autorizhed

NOTE: to have more informations about the transferred data, see the .PLIB File
Specifications in the documentation.

Query status for a object in a group authority session
Code: AS + 1105

Symbolic: bccRpeGASessionObjStatus

This command will query status for an object in a Group Authority session on the connected
device. Request parameters are the following:

Offset Type Label Description
0 u32 SESSID Session ID
4 ulé6 OBITYPE Object type:

1=Running PLIB
2=Testing PLIB

6 u32 WDT Watchdog time [ms]

Notes:

© 2025 Robox SpA

Messages 243

e This command also contain watchdog information, so if you periodically use this command
you have no need to send the bccRpeGASessionWd 24 message manually.

On success, a bccAck[dl is received with the following data:

Offset

0

12

16

17

Type

u32

u32

u32
u32
us

us

Label

STATE

ECMD

PATHID
STEPID

PATHCP

STEPCP

Description

Object state:

0x1 Loaded

0x2 Execution ready
0x4 Execution active
0x8 Execution paused
0x10 Hold active

0x20 Stop request
active

0x40 Hold request
active

0x80 Step execution
active

0x100 Backward
execution active

0x200 Initial
positioning active
Enabled object
commands:

0x1 Set current
0x2 Start

0x4 Stop

0x8 Step

0x10 Hold

0x20 Unhold

0x40 Backward
direction

0x80 Initial position
0x100 Joint JOG
0x200 Cartesian JOG

0x400 Update point
quote

Executing path ID
Executing step ID

Executing path
completation %

Executing step
completation %

© 2025 Robox SpA

244

BCC Communication Protocol v 3.10

Offset
18

22

26
30

34

38

42
46

50

54

Type

FLT

FLT

FLT

FLT

FLT

FLT

FLT

FLT

FLT

FLT

Label

PATHTLEN

PATHELEN

PATHTTIME

PATHETIME

STEPTLEN

STEPELEN

STEPTTIME

STEPETIME

TSPE

TACC

On failure, a bccNack[+R is received. Specific errors:

NACK code
nackMissingArgs

nacklllegalArgs

nackNotFound
nackRpeNotInstalled

nackNotAutorhized

Resolve an axes group

Code:

Symbolic:

Description
Missing arguments

Illegal arguments

Session not found
RPE firmware is not installed

Operation not authorized

AS + 1000

Description

Path total length
[unit]

Path executed length
[unit]

Path total time [s]

Path executed time

[s]

Step total length
[unit]

Step executed length
[unit]

Step total time [s]

Step executed time

[s]

Current tangential
speed [unit/s]

Current tangential
acceleration [unit/s2]

Extra data

Ul6 What illegal:
1=Session ID
2=0bject type
3=Watchdog time

bccRpeAxesGroupResolve

This command will try to resolve an existing axes group of the connected device. Request

parameters are the following:

© 2025 Robox SpA

Messages 245

Offset Type Label Description
0 u32 FLAGS Request flags:
(none)
4 us NAMESIZE Size for field NAME (\O

termination included)

5 STRZ NAME Axes group NAME

On success, a bccAck[6d is received with following data:

Offset Type Label Description

0 u32 GID Axes group ID

On failure, a beccNack[d is received. Specific errors:

NACK code Description Extra data
nackMissingArgs Missing arguments
nacklllegalArgs Illegal arguments Ul6 What illegal:
1=Flags
2=Name
nackNotFound Axes group not found
nackRpeNotInstalled RPE firmware is not installed

Save an object from a group authority session
Code: AS + 1104

Symbolic: bccRpeGASessionObjSave

This command will save an object from a group authority session on the connected device.
this is a standard data save sequence[+s".

REQDATA structure is the following:

Offset Type Label Description

0 us[1i6] - (reserved, see data
save sequence
specifications)

16 u32 FLAGS Operation flags:
(none)

20 u32 SESSID Session ID

24 ulé6 OBJTYPE Object type:

1=Running PLIB
2=Testing PLIB

© 2025 Robox SpA

246

BCC Communication Protocol v 3.10

On success, a bccAckl) is received with at least the following data (ACKDATA):

Offset
0

Type
u8[16]

Label Description

- (reserved, see data
save sequence
specifications)

If initial request fails, bccNack[+ed) is received. Specific errors

NACK code

nacklllegalArgs

nackNotFound
nackRpeNotlInstalled

nackNotAuthorized

Description Extra data
Illegal parameter Ul6 What illegal:
1=Size
2=Flags
3=Session ID

4=0bject type
Session not found
RPE firmware is not installed

Operation not authorized

NOTE: to have more informations about the transferred data, see the .PLIB File
Specifications in the documentation.

Update positions for an object's step inline point in a group autority session

Code:

Symbolic:

AS + 1109

bccRpeGASessionUpdateObjSteplInlinePoin
tP

This command will send a request to update positions for a specific objet's inline point of
the specified step in a Group Authority session on the connected device. Request

parameters are the following:

Offset
0

4

Type

u32
ule

us

us
u32

Label Description
SESSID Session ID
OBJTYPE Object type:

1=Running PLIB
2=Testing PLIB

PTYPE Position type:
1=Joint
2=Cartesian

- (reserved)

PATHID Path ID

© 2025 Robox SpA

Messages 247

Offset Type Label Description

12 u32 STEPID Step ID

16 u32 POINTIX Point index

20 u32 PMASK Mask of updating
positions

24 FLT P[30] Positions

On success, a becAck[63 is received with the no data.

On failure, a beccNack(e4l is received. Specific errors:

NACK code Description Extra data

nackMissingArgs Missing arguments

nacklllegalArgs Illegal arguments U16 What illegal:
1=Session ID

2=0bject type
3=Position type
4=Path ID
5=Step ID
6=Point index
7=Positionmask
10+i=Position[i]

nackNotFound Not found U16 What not found:
1=Session
2=Point

nackBusy Session is busy, cannot

execute the command
nackRpeNotInstalled RPE firmware is not installed

nackNotAuthorized Operation not authorized

Update positions for an object's point in a group autority session
Code: AS + 1108

Symbolic: bccRpeGASessionUpdateObjPointP

This command will send a request to update positions for a specific point of the specified
object in a Group Authority session on the connected device. Request parameters are the

following:
Offset Type Label Description
0 u32 SESSID Session ID

© 2025 Robox SpA

248

BCC Communication Protocol v 3.10

Offset

4

12

16

Type

ule

us

us
u32
u32

FLT

Label

OBITYPE

PTYPE

POINTID

PMASK

P[30]

On success, a bccAck[sl is received with the no data.

On failure, a bccNack[+R is received. Specific errors:

NACK code
nackMissingArgs

nacklllegalArgs

nackNotFound

nackBusy

nackRpeNotInstalled

nackNotAuthorized

Description
Missing arguments

Illegal arguments

Not found

Session is busy, cannot
execute the command

RPE firmware is not installed

Operation not authorized

Watchdog for group authority session

Code:

Symbolic:

1102

Description
Object type:
1=Running PLIB
2=Testing PLIB
Positions type:
1=Joint

2=Cartesian
(reserved)
Point identifier

Mask of updating
positions

Positions

Extra data

Ul6 What illegal:
1=Session ID
2=0bject type
3=Quote type
4=Point ID
5=Quote mask
10+i=Quote Q[i]

Ul16 What not found:
1=Session
2=Point

bccRpeGASessionWd

© 2025 Robox SpA

Messages 249

This command will refresh session grant time (watchdog) for the specified testing session
on the connected device. Request parameters are the following:

Offset Type Label Description
0 u32 SESSID Session ID
4 u32 WDT Watchdog time [ms]

Variable handling

These message are used getting and setting variable value for a connected device.

NOTE: all variable of type string are considered to be encoded as UTF-8.

Standard variables handling: Safe variables handling:

e bccReadVarlzd), read a variable e bccSafeReadVarlzss), read a variable (safe)
e bccWriteVarl20), write a variable e bccSafeWriteVarlzr1, write a variable (safe)
e bccForceVarl26), force a variable o bcecSafeForceVarl263), force a variable (safe)
e bccReleaseVarl2eh, release a variable e bccSafeReleaseVar(zh, release a variable

(safe)

e bccSafeReleaseAllVars[28), release all
variables (safe)

e bccReleaseAllVars[z8), release all variables

All variables handling:

* becEnumVari 26, enumerate variables Dynamic variables handling:

e bccRegisterVar[z8), register a dynamic
variable

e bccUnregisterVarlzed), un-register a dynamic
variable

e bccUnregisterAllVars[27d), un-register all
dynamic variables

Enumerate variables
Code: AS + 314

Symbolic: bccEnumVar

This command will enumerate variables definition: this is a standard download transfer
sequence[.

REQDATA structure is the following:

Offset Type Label Description

0 u32 FLAGS Operation settings:
0x00000001
Enumerate standard
variables

© 2025 Robox SpA

250 BCC Communication Protocol v 3.10

Offset Type

4 u32

ACKDATA structure is the following:

Offset Type
0 u32
4 u32

Label

VARSETID

Label

COUNT

VARSETID

On failure, a beccNackledl is received. Specific errors:

NACK code

nackSameData

nacklllegalArgs

Description

Remote variable set is the

same of the local set.

Enumeration is not needed.

Illegal parameter

ITEMDATA structure is the following:

Offset Type
0 ule
2 uie
4 us8

Label
PID
VARID

CATEG

Description

0x00000002
Enumerate user task
variables

0x00000004
Enumerate logical
variables

0x00000008 Force
enumeration (even is
same ID)

0x00000010
Enumerate dynamic
variables

Current locale
variable set
identification: if
different, enumeration
will occurs.

Description

No. of item that will
be received

Real variable set
identification

Extra data

U16 What illegal:
1=Flags
2=Variable set ID

Description
Process ID
Variable ID

Variable category:
0=Not valid (illegal)

10=Ladder diagram
alias

© 2025 Robox SpA

Messages 251

Offset Type Label
5 u8[23] DATA
28 STRZ NAME

Description

11=Memory variable
(#1)

12=Standard variable
13=Logical structure
14=Logical variable

15=Dynamic
structure/class

16=Dynamic variable

Data according
variable category

Variable name

(#1) Memory variables are considered to be represented in little-endian format.
If filed PID has value of OxFFFF (group definition), ITEMDATA structure is the following:

Offset Type Label
0 uile PID

2 uie6 NSIZE
4 STRZ(NSIZE+1) NAME
4+NSIZE+1 STRZ TEXT

Description
Task ID (OXFFFF)

Name size (excluded
terminal 0)

Group name

Group description

When a variable group definition is received (PID=0xFFFF), all subsequent received
variables are relative to this group definition until a new group definition is received.

Notes:

e bccDatal 3 (or bccEndDatal+62)) messages will begin with pid = 0 and will be incremented

by 1 at each message.

e bccEndDatal) contain last item and after it the transfer is completed.

e The data transfer could be aborted at any time with a bccAbort[3) command.

e The maximum repeat counter is calculated as the product array index size: if none of 3
index are defined, maximum repeat counter is assumed to have a default value of 1.

e Variable definition with childs (referenced by a PPID e PVARID) must be category 11

(Memory variable) and type 11 (Structure).

Specific DATA for category 10 (ladder diagram alias)

Offset Type Label
+0 uie TYPE

Description

Alias type:
0=not valid (illegal)

1=logical input
channel

© 2025 Robox SpA

252

BCC Communication Protocol v 3.10

Offset

+2

+4

Specific DATA for category 11 (memory variable)

Offset

+0

Type

uleé
ule

Type
U8

Label

IX

BIX

Label

TYPE

Description
2=logical input word
16bit

3=logical input word
16bit, bit access

4=logical input word
32bit

5=logical input word
32bit, bit access

6=logical output
channel

7=logical output word
16bit

8=logical output
word 16bit, bit access

9=logical output word
32bit

10=logical output
word 32bit, bit access

11=integer volatile
register 32bit

12=integer volatile
register 32bit, bit
access

13=integer non
volatile register 32bit

l4=integer non
volatile register 32bit,
bit access

15=real volatile
register 64bit

16=real non volatile
register 64bit

17=alarm mask

18=alarm mask, bit
access

Variable index

Bit index for bit access

Description

Memory x86 variable
type:

0=not valid (illegal)

© 2025 Robox SpA

Messages 253

Offset

+1

+5
+7
+9

+11

Type

u32

ule
ule
ule

u32

Label

SIZE

DIMO
DIM1
DIM2

FLAG

Description

1=unsigned 8bit
2=signed 8bit
3=unsigned 16bit
4=signed 16bit
5=unsigned 32bit
6=signed 32bit
7=double (64bit)
8=float (32bit)
9=boolean (#1)
10=char array

11=structure
definition

12=string (0
termined) (#3)
13=bit

14 =timer (#2)
15=counter (#2)
16=(reserved)
17=unsigned 64bit
18=signed 64bit
Variable base size. In
case of string type
(12), this field indicate
the maximum string

buffer size, 0
terminator included.

Array index 0 size
Array index 1 size
Array index 2 size

Variable flags:

0x00000001 Has
array 0 size

0x00000002 Has
array 1 size

0x00000004 Has
array 2 size

0x00000008 Has
repeat counter

0x00000010 Has
parent variable

© 2025 Robox SpA

254

BCC Communication Protocol v 3.10

Offset Type Label
+15 u32 ADDR
+19 uie PPID
+21 uie PVARID

(#1) Boolean type (9) is considered having an unsigned 8bit storage.

Description

Base address or
parent offset (if has
parent flag)

Parent Process ID

Parent Variable ID

(#2) Timer type (14) and counter type (15) have their own predefined structure.

(#3) RDE3 does not currently support this data type.

Notes:

e Flag 'Has array 2 size' implies flag 'Has array 1 size' and this implies flag 'Has index 0'.

Specific DATA for category 12 (standard variable)

Offset Type Label

+0 ule TYPE

Description

Variable type:
0=not valid (illegal)

1=logical input
channel

2=logical input word
16bit

3=logical input word
32bit

4=|ogical output
channel

5=logical output word
16bit

6=logical output word
32bit

7=integer volatile
register 32bit

8=integer non volatile
register 32bit

9=real volatile
register 64bit

10=real non volatile
register 64bit

11=alarm mask 32bit

12=string volatile
register (#1)

13=string non volatile
register (#1)

l4=integer parameter
register 16bit

© 2025 Robox SpA

Messages 255

Offset Type Label Description

15=integer parameter
register 32bit

16=real parameter
register 64bit

17=float parameter
register 32bit

18=integer axis
parameter 16bit

19=integer axis
parameter 32bit

20=real axis
parameter 64bit

21=float axis
parameter 32bit

22=alarm code in
alarm stack

23=alarm text in
alarm stack (#1)

24 =integer volatile
register 64bit

25=integer non
volatile register 64bit

26=integer parameter
register 64bit

27=integer axis
parameter 64bit

+2 ulé6 BASE Base index

+4 uleé DIM Array size

+6 116 OFFSET Array offset

+8 ulé6 AXIS Axis count

+10 u32 FLAGS Variable flags:
0x00000001 Has
array size
0x00000002 Has axis
count

0x00000004 Has
array offset

+14 u16 SSIZE String size (#1)

(#1) Use SSIZE field to text string size
Notes:
e Usually these variables should be relative to a group named SYS (aka system variables).

e General fields PID and VARID are not used by this category.

© 2025 Robox SpA

256 BCC Communication Protocol v 3.10

Specific DATA for category 13 (logical structure)
Offset Type Label Description

+0 u32 TYPEID Structure type ID:

0x00000000-
O0x0000FFFF
predefined

0x00010000-
OXFFFFFFFF user
defined

Predefined types ID
are:

0x00000000=not
valid (illegal)

0x00000001=signed
8bit

0x00000002=unsigne
d 8bit

0x00000003=signed
16bit

0x00000004=unsigne
d 16bit

0x00000005=signed
32bit

0x00000006=unsigne
d 32bit

0x00000007=signed
64bit

0x00000008=unsigne
d 64bit

0x00000009=string
(#1)

0x0000000A=float
(32bit)

0x0000000B=double
(64bit)

0x0000000C=boolean
0x0000000D=timer
0x0000000E=counter

0x0000000F=alias
(ladder)

0x00000010=edge
(ladder)

0x00000011=(reserve
d, ex power set)

© 2025 Robox SpA

Messages 257

Offset Type Label Description

0x00000012=(reserve
d, ex axes group)

0x00000013=(reserve

d, ex path)
0x00000014=(reserve
d, ex point_I)
+4 ulé6 DIMO Array 0 size (O=none)
or string size (#1)
+6 ulé6 DIM1 Array 1 size (O=none)
+8 ulé6 DIM2 Array 2 size (O=none)
+10 ulé6 OFFO Array 0 index offset
+12 ule6 OFF1 Array 1 index offset
+14 uié6 OFF2 Array 2 index offset
+16 u32 FLAGS Flags:

0x00000001 Begin of
user defined structure

0x00000002 End of
user defined structure

0x00000004 Disable
bit access

(#1) DIMO value 0 assume meaning of default string size
Notes:

e A used defined structure declaration must begin with the "begin of user defined
structure" flag and must end with the "end of user defined structure" flag: a void
structure declaration (both flags specified) is allowed, but is useless.

e General fields PID and VARID are not used by this category.

e Fields DIMO, DIM1 and DIM2 (and related field OFFx and flags "Has index N") are not used
with the "Begin of user defined structure" flag.

e User defined structure are relative to the current group only: when it change, structure
are cleared.

e User defined structure cannot have nested declaration, but can have item with TYPEID
related to another user defined structure.

e DIM2 > 0 implies DIM1 > 0 and DIM1 > 0 implies DIMO > O.

e Type 0x00000009 (string) has DIMO as string size (O=default 128 character string): string
array indexes are from DIM1 field.

e The disable bit access flag is intended for those TYPEID that normally provides the data
bit access (like integer values).

Specific DATA for category 14 (logical variable)

© 2025 Robox SpA

258

BCC Communication Protocol v 3.10

Offset

+0

Type
u32

Label

TYPEID

Description

Structure type ID:

0x00000000-
Ox0000FFFF
predefined

0x00010000-
OXFFFFFFFF user
defined

Predefined types ID
are:

0x00000000=not
valid (illegal)

0x00000001=signed
8bit

0x00000002=unsigne
d 8bit

0x00000003=signhed
16bit

0x00000004=unsigne
d 16bit

0x00000005=signhed
32bit

0x00000006=unsigne
d 32bit

0x00000007=sighed
64bit

0x00000008=unsigne
d 64bit

0x00000009=string
(#1)

0x0000000A=float
(32bit)

0x0000000B=double
(64bit)

0x0000000C=boolean
0x0000000D=timer
0x0000000E=counter

0x0000000F=alias
(ladder)

0x00000010=edge
(ladder)

0x00000011=(reserve
d, ex power set)

0x00000012=(reserve
d, ex axes group)

© 2025 Robox SpA

Messages 259

Offset Type Label Description
0x00000013=(reserve
d, ex path)
0x00000014=(reserve
d, ex point_I)

+4 ulé6 DIMO Array 0 size (O=none)
or string size (#1)

+6 uié6 DIM1 Array 1 size (O=none)

+8 ule DIM2 Array 2 size (O=none)

+10 ulé6 OFFO Array 0 index offset

+12 ulé6 OFF1 Array 1 index offset

+14 ulé6 OFF2 Array 2 index offset

+16 u32 FLAGS Variable flags:

0x00000001 Disable
bit access

(#1) DIMO value 0 assume meaning of default string size

Notes:

User structure type ID are defined with category 13 (logical structure) that have to be
defined before the category 14 (logical variable).

General fields PID and VARID are not used by this category.
DIM1 > 0 implies DIMO > 0, and DIM2 > 0 implies DIM1 > 0 and DIMO > 0.

Type 0x00000009 (string) has DIMO as string size (0O=default 128 character string): string
array indexes are from DIM1 field.

The disable bit access flag is intended for those TYPEID that normally provides the data
bit access (like integer values).

Specific DATA for category 15 (dynamic structure)

Offset Type Label Description

+0 u32 TYPEID Structure type ID:

0x00000000-
0x00000FFF
predefined

0x00001000-
OXFFFFFFFF user
defined

Predefined types ID
are:

0=not valid (illegal)
1=signed 8bit

© 2025 Robox SpA

260

BCC Communication Protocol v 3.10

Offset Type
+4 uie
+6 uie
+8 uie
+10 u32
+14 u32

(#1) DIMO value 0 assume meaning of default string size

Notes:

Label

DIMO

DIM1
DIM2

FLAGS

PTYPEID

Description

2=signed 16bit
3=signed 32bit
4=signed 64bit
5=unsigned 8bit
6=unsigned 16bit
7=unsigned 32bit
8=unsigned 64bit
9=float (32bit)
10=real (64bit)
11=bool
12=string

Array 0 size (0O=none)
or string size (#1)

Array 1 size (O=none)
Array 2 size (0O=none)

Flags:

0x00000001
Structured begin

0x00000002 Structure
end

0x00000004 Disable
bit access

0x00000008 static
structure item

0x00000010 Static-
instance structure
item

OxFO000000 Structure
type (mask):

0x0 = structure
0x1 = class
0x2

0x3 = interface

namespace

Parent structure ID
(0=none)

e A used defined structure/class declaration must begin with the 0x1 flag (structure begin)
and must end with the 0x2 flag (structure end): a void structure declaration (both flags

specified) is allowed, but is useless.

© 2025 Robox SpA

Messages 261

e General fields PID and VARID are not used by this category.

e Field TYPEID, if flags Ox1 (structure begin) is set, contains the source type-id of the
structure itself: in all other cases, the field refer to the item target type-id.

e Field PTYPEID is used only when the flag Ox1 (structure begin) is set

e Fields DIMO, DIM1 and DIM2 (and related field OFFx and flags "Has index N") are not used
when the flag 0x1 (structure begin) is set

e User defined structure are relative to the current group only: when it change, structure
are cleared.

e User defined structure cannot have nested declaration, but can have item with TYPEID
related to another user defined structure.

e DIM2 > 0 implies DIM1 > 0 and DIM1 > 0 implies DIMO > 0.

e Type 13 (string) has DIMO as string size (0=default 128 character string): string array
indexes are from DIM1 field.

e The disable bit access flag is intended for those TYPEID that normally provides the data
bit access (like integer values).

e The static structure item flag is valid only if the flags 0x1 (structure begin) is not set.

e The structure type value is valid only if the flags 0x1 (structure begin) is set.

Specific DATA for category 16 (dynamic variable)
Offset Type Label Description

+0 u32 TYPEID Variable type ID:

0x00000000-
0x00000FFF
predefined

0x00001000-
OXFFFFFFFF user
defined

Predefined types ID
are:

0=not valid (illegal)
1=signed 8bit
2=signed 16bit
3=signed 32bit
4=signed 64bit
5=unsigned 8bit
6=unsigned 16bit
7=unsigned 32bit
8=unsighed 64bit
9=float (32bit)
10=real (64bit)
11=bool

© 2025 Robox SpA

262

BCC Communication Protocol v 3.10

Offset Type
+4 uie
+6 ule
+8 uleé
+10 u32

(#1) DIMO value 0 assume meaning of default string size

Notes:

Label

DIMO

DIM1
DIM2

FLAGS

Description
12=string

Array 0 size (O=none)
or string size (#1)

Array 1 size (O=none)
Array 2 size (0O=none)

Flags:

0x00000001
(reserved)

0x00000002
(reserved)

0x00000004 Disable
bit access

0x00000008 Static
variable

0x00000010 Static-
instance variable

User dynamic structure typeid's are defined with category 15 (dynamic structure): the

dynamic variable can be defined before its declaration.
General fields PID and VARID are not used by this category.

DIM1 > 0 implies DIMO > 0, and DIM2 > 0 implies DIM1 > 0 and DIMO > 0.

Type 13 (string) has DIMO as string size (O=default 128 character string): string array

indexes are from DIM1 field.

The disable bit access flag is intended for those TYPEID that normally provides the data

bit access (like integer values).

Force a variable

Code:

Symbolic:

AS + 312

bccForceVar

This command will force the value of a variable (for example force the state of input
channel). Request parameters are the following:

Offset Type
0 VAR[9N
10 u8[]

Label

VARID

DATA

On success, a becAck[6h is received with no data.

On failure, a beccNack[#h is received. Specific errors:

Description
Variable identification

Variable data,
according VARID field.

© 2025 Robox SpA

Messages 263

NACK code Description Extra data
nackReadOnly Variable read-only or
predefined
nacklllegalArgs Illegal arguments Ul6 What illegal:
1=Type
2=Index
3=Address
4=Repeat counter
5=Bit index
6=Size
nackCantForce Variable value cannot be
forced
nackDataUnderflow Variable data too short
nackNotlInitialized Variable is not initialized

Force a variable (safe)
Code: AS + 318

Symbolic: bccSafeForceVar

This command will force the value of a variable in a safe way (for example force the state of
input channel). Request parameters are the following:

Offset Type Label Description

0 u32 VARSETID Variable set
identification

4 VAR[90 VARID Variable identification

14 uUsI[] DATA Variable data,

according VARID field.

On success, a bccAck[e is received with no data.

On failure, a becNack[ed is received. Specific errors:

NACK code Description Extra data
nackReadOnly Variable read-only or
predefined
nacklllegalArgs Illegal arguments Ul6 What illegal:
1=Type
2=Index
3=Address

4=Repeat counter

© 2025 Robox SpA

264 BCC Communication Protocol v 3.10

NACK code Description Extra data
5=Bit index
6=Size

nackCantForce Variable value cannot be

forced

nackDataUnderflow Variable data too short

nacklllegalVarsetld Illegal variable set

identification

nackNotInitialized Variable is not initialized

Read a variable
Code: AS + 310

Symbolic: bccReadVar

This command will read value for a variable. Request parameters are the following:
Offset Type Label Description

0 VAR[o8 VARID Variable identification

On success, a bccAck[sl is received with following data:

Offset Type Label Description

0 U8I[] DATA Variable data,
according VARID field.

On failure, a bccNack[+h is received. Specific errors:

NACK code Description Extra data
nackReadError Error reading variable
nacklllegalArgs Illegal parameter U1l6 What illegal:
1=Type
2=Index
3=Address
4=Repeat counter
5=Bit index
6=Size
nackDataOverflow Variable data too long
(exceed 255)
nackWriteOnly Variable is write only, cannot
read.

© 2025 Robox SpA

Messages 265

NACK code Description Extra data

nackNotInitialized Variable is not initialized

For more information about variable types, see table of standard variables/zs).

Read a variable (safe)
Code: AS + 316

Symbolic: bccSafeReadVar

This command will read value for a variable in a safe way. Request parameters are the

following:

Offset Type Label Description

0 u32 VARSETID Variable set
identification

4 VAR[0 VARID Variable identification

On success, a bccAck[6d is received with following data:

Type Label Description
Us8I[] DATA Variable data, according
VARID field.

On failure, a becNack[ed is received. Specific errors:

NACK code Description Extra data

nackReadError Error reading variable

nacklllegalArgs Illegal parameter Ul6 What illegal:
1=Type
2=Index
3=Address
4=Repeat counter
5=Bit index
6=Size

nackDataOverflow Variable data too long

(exceed 255)

nackWriteOnly Variable is write only, cannot
read
nacklllegaleVarsetld Illegal variable set

indetification

nackNotInitialized Variable is not initialized

For more information about variable types, see table of standard variables|zsd.

© 2025 Robox SpA

266

BCC Communication Protocol v 3.10

Register a dynamic variable
Code: AS + 321

Symbolic:

bccRegisterVar

This command will register a dynamic variable on the connected device. Request parameters

are the following:

Offset Type Label

0 u32 OWNERID
4 u32 VARSETID
8 uie6 FLAGS

10 STRZ KEY

On success, a beccAck[sl is received with the following data:

Offset Type Label
0 us[e6] VIDD

6 uie6 FLAGS
8 u32 TTL

On failure, a becNackl+h is received. Specific errors:

NACK code Description

nacklllegalVarsetld Illegal variable set
identification

nacklllegalArgs Illegal arguments

nackNotFound Variable key not found

nacklllegalDataType Variable data type not

handled

Description
Owner identification

Variable set
identification

Registration flags:

0x1=Single use
registration

Variable key

Description

Variable identification
data

Registration reply
flags:
Ox1=Unlimited TTL

Variable time to live
[ms]

Extra data

U16 What illegal:
1=Ownerld

The dynamic variables always have a duration (or expiration): this duration is to be

considered as the maximum time of said inactivity (TTL).

Format of the KEY field

© 2025 Robox SpA

Messages 267

The format of the KEY field is the following:

[<prefix>] [; [<repeat>]]=<fieldO0>[;<fieldl>[..]]

where <prefix> is the name of the RVAR prefix (or * in case of no prefix) , <repeat> is the
number of the consecutive data, where possible (default value is 1).

The format of the <fieldX> data is the following:
[<prefix>] [; [<repeat>]]=<fieldO0>[;<fieldl>[..]]

where <name> is the name of the field and <indexX> is the optional X array index. Note
that: value <index2> implies <indexl1> and <index1> implies <index0>.

Release a variable
Code: AS + 313

Symbolic: bccReleaseVar

This command will release the value of a variable (for example release the state of an input
channel). Request parameters are the following:

Offset Type Label Description

0 VAR[o7 VARID Variable identification

On success, a becAck[63 is received with no data.

On failure, a beccNack[eh is received. Specific errors:

NACK code Description Extra data
nackReadOnly Variable read-only or
predefined
nacklllegalArgs Illegal arguments U16 What illegal:
1=Type
2=Index
3=Address
4=Repeat counter
5=Bit index
6=Size
nackCantRelease Variable value cannot be
released
nackNotInitialized Variable is not initialized
Release a variable (safe)
Code: AS + 319
Symbolic: bccSafeReleaseVar

© 2025 Robox SpA

268

BCC Communication Protocol v 3.10

This command will release the value of a variable (for example release the state of an input
channel). Request parameters are the following:

Offset Type Label Description
0 u32 VAR Variable set
SETID identification
4 VAR 0" VARID Variable identification

On success, a bccAck[el is received with no data.

On failure, a bccNack[R is received. Specific errors:

NACK code Description Extra data
nackReadOnly Variable read-only or
predefined
nacklllegalArgs Illegal arguments Ul6 What illegal:
1=Type
2=Index
3=Address
4=Repeat counter
5=Bit index
6=Size
nackCantRelease Variable value cannot be
released
nacklllegalVarsetld Illegal variable set

identification

nackNotlnitialized Variable is not initialized

Release all variables
Code: AS + 315

Symbolic: bccReleaseAllVars
This command will release the value for all forced variables. Request has no parameters.

On success, a bccAck[sl is received with no data.

On failure, a bccNack[R is received. There are no specific errors.

Release all variables (safe)
Code: AS + 320

Symbolic: bccSafeReleaseAllVars

© 2025 Robox SpA

Messages 269

This command will release the value for all forced variables in a safe way. Request
parameters are the following:

Offset Type Label Description

0 u32 VARSETID Variable set
identification

On success, a becAck[6h is received with no data.

On failure, a beccNackledl is received. Specific errors:

NACK code Description Extra data
nacklllegalVarsetld Illegal variable set U16 What illegal:
identification
1=Type
2=Index
3=Address
4=Repeat counter
5=Bit index
6=Size
Un-register a dynamic variable
Code: AS + 322
Symbolic: bccUnregisterVar

This command will un-register a dynamic variable from the connected device. Request
parameters are the following:

Offset Type Label Description

0 u32 OWNERID Owner identification

4 u32 VARSETID Variable set
identification

8 u8[6] VIDD Variable identification
data

On success, a becAck[6h is received with no data:

On failure, a beccNackldl is received. Specific errors:

NACK code Description Extra data

nacklllegalVarsetld Illegal variable set
identification

nacklllegalArgs Illegal arguments U1l6 What illegal:
1=Ownerld
2=Key
nackNotFound Variable key not found

© 2025 Robox SpA

270

BCC Communication Protocol v 3.10

Un-register all dynamic variables
Code: AS + 323

Symbolic: bccUnregisterAllVars

This command will un-register all variables for a specific owner from the connected device.
Request parameters are the following:

Offset Type Label Description
0 u32 OWNERID Owner identification
4 u32 VARSETID Variable set

identification

On success, a becAck[63 is received with no data:

On failure, a becNack[eh is received. Specific errors:

NACK code Description Extra data
nacklllegalvarsetld Illegal variable set
identification
nacklllegalArgs Illegal arguments Ul6 What illegal:
1=Ownerld

Write a variable
Code: AS + 311

Symbolic: bccWriteVar

This command will write value for a variable. Request parameters are the following:

Offset Type Label Description
0 VAR 9% VARID Variable identification
10 usI] DATA Variable data,

according VARID field.

On success, a becAck[63 is received with no data.

On failure, a becNack[+h is received. Specific errors:

NACK code Description Extra data
nackReadOnly Variable read-only (cannot
write)
nacklllegalArgs Illegal parameter U16 What illegal:
1=Type
2=Index
3=Address

© 2025 Robox SpA

Messages 271

NACK code Description Extra data

4=Repeat counter
5=Bit index
6=Size

nackDataUnderflow Variable data too short

nackNotlInitialized Variable is not initialized

For more information about variable types, see table of standard variables/zd).

Write a variable (safe)
Code: AS + 317

Symbolic: bccSafeWriteVar

This command will write value for a variable in a safe way. Request parameters are the

following:

Offset Type Label Description

0 u32 VARSETID Variable set
indentification

4 VAR o8 VARID Variable identification

14 UsI] DATA Variable data,

according VARID field.

On success, a becAck[dh is received with no data.

On failure, a becNackld is received. Specific errors:

NACK code Description Extra data
nackReadOnly Variable read-only (cannot
write)

nacklllegalArgs Illegal parameter U1l6 What illegal:
1=Type
2=Index
3=Address
4=Repeat counter
5=Bit index
6=Size

nackDataUnderflow Variable data too short

nacklllegalvVarsetld Illegal variable set

identification

nackNotlnitialized Variable is not initialized

© 2025 Robox SpA

272

BCC Communication Protocol v 3.10

For more information about variable types, see table of standard variables/zss).

Network interfaces

Network interfaces

Network interface are defined as general software application or hardware device that give
the possibility to communicate with Robox Devices with different criteria than local
connection (e.g. RS232 connections).

Interface types
Mainly there are three types of network interfaces:

1. Direct TCP/IP network connection, into a local area network (LAN) or more general wide
area network (WAN), like Internet, via ethernet connection (see Ethernet network

example[272).

2. Indirect TCP/IP via a Dialup Modem connection, using the standard PPP protocol (see
Modem network example|273)).

3. Direct Dialup Modem connection, using a raw protocol on the RS232 connector.

Integrated ETH port

Newer generation of RBXM (CPU586 and CPUG2) devices have an integrated ETH port that
allow direct TCP/IP communication.

The integrated ETH inferface allow TCP connection through connection to port 8000, with
BCC/31 over DLE/CRC16 transport.

Note: if configured, any TCP connection must authenticate before BCC/31 message can be
processed : for more information look at bccNetlLogin[200l command. Message not allowed
(even after authentication), are denied with a bccNack/[ef response with nackNotAuthorized
error code.

NET.INT. expansion board

The NET.INT. is no more in use since newer RBXM devices have their own integrated ETH
port.

Ethernet network example

This example explain how can be created a classical local area network (LAN) with some
RBXM and PC connected, and how can be reached from various external connection.

All device in the LAN area are connected to an Hub via RJ-45 Ethernet cable: the protocol
used in this network is TCP/IP over ethernet.

Connecting a properly configured ISP router to the HUB (via RJ-45 Ethernet) you can allow
connection from the Internet.

The Internet connection, provided by your ISP, can be established with various type of
transport or physical devices (like ADSL, HDSL, CDN, ATM, etc): all these will transport the
TCP/IP protocol to the router with their own physical transport protocol. The router will
communicate with local network via TCP/IP over ethernet.

By having a RAS (remote access) server access, the network can be configured to allow dial-
in access from a standard telephone line. A remote authorized user with a standard modem
can open a remote access connection to your telephone number and have access to your
local network.

In this case, the remote PC will communicate up to the RAS server in TCP/IP over PPP; next
the remote network transport will be applied.

© 2025 Robox SpA

Network interfaces 273

IHardware

Router "'
f_[\‘ Internet)—m
-I _ﬂ;,_,—— e o m

T

Ay B | P T |

Server Working PCs telephone s

e

Modem network example

In this example we have a RBXM with a NET.INT. board installed: a standard modem is
connected to the RS232 port of the NET.INT. board itself.

From your PC, using remote access (PPP protocol), you can activate the modem connection
on a standard RTG line (default telephone line): at this point your PC will communicate with
the RBXM via TCP/IP over PPP, allowing to access any TCP application on the NET.INT.

I Hardware
|f_ o
~ Standard) =
telephane -
d " Modem
Rbxm (remota) oo e PC (local)

Miscellaneus

Messages map
Here a map of all basic BCC/31 actually defined messages:

Symbolic Code Description

0 (reserved for internal use)
beccAck[eh 1 General acknowledge
bceNack(16h 2 General not acknowledge
bccData[165 3 Binary data
bccAbort[165 AS+4 Abort command
bccAborted[63 5 Abort event
bccEndDatal 160 6 End of data
bcecNoDatal16é) 7 No data
beclBlock(163 8 Software interblock

© 2025 Robox SpA

274

BCC Communication Protocol v 3.10

Symbolic
becCheck(+ed)
becBusy[1eh
beccCompleted|[+en
becWait[160

becReadylen

bccPing (218
bccPong[zi)

bccFlashFileLoad [
bccFlashFileSave[1s5)
becFlashDirl 14
bccFlashFileDelete [140)

bccFlashFileRename[58

becFlashTree[58
bccFlashFormat[ai
bccFlashinfol sy
bccFlashFileInfo[sd)
becFlashlList[1s8)
bccFlashinit[s
bccFlashFolderCreate[13R
bccFlashFolderDelete[48)

becFlashFolderInfolsi)

bccFlashInfoByFolder[s9)

bccFlashDisk/[148)

bccFlashSetAttributes[63)

Code
AS+9
10

11

12

13
14-37
AS+38
39
40-99

AS+100
AS+101
AS+102
AS+103
AS+104
105-106
AS+107
AS+108
AS+109
AS+110
AS+111
AS+112
AS+113
AS+114

AS+115

AS+116

AS+117
AS+118

119-199

Description

Check point command
System busy event
Completation event
Wait more

Ready

(reserved)

Ping command

Ping answer

(reserved for old BCC/30
transfer commands)

Load a file to a flash folder
Save file from a flash folder
Query flash folder contents
Delete flash files

Rename a flash file
(reserved)

Query flash folder tree
Format a flash

Query flash information
Query flash file information
Query flashes list

Define and initialize flashes
Create a flash folder
Delete a flash folder

Query flash folder
information

Query flash information by
folder

Handle disk flashes
Set flash file/folder attributes

(reserved)

© 2025 Robox SpA

Miscellaneus 275

Symbolic Code Description

bccGetICl+7R AS+200 Get input channel
(deprecated)

bccGetIW 16[+N AS+201 Get input word 16bit
(deprecated)

bccGetOC[172) AS+202 Get output channel
(deprecated)

bccGetOW 16[170) AS+203 Get output word 16bit
(deprecated)

bccSetOCl7h AS+204 Set output channel
(deprecated)

bccSetOW 16[+78) AS+205 Set output word 16bit
(deprecated)

bccForceICled) AS+206 Force input channel
(deprecated)

bccForceIW 16[160) AS+207 Force input word 16bit
(deprecated)

bccForce OC[16d) AS+208 Force output channel
(deprecated)

bccForceOW 16[470) AS+209 Force output word 16bit
(deprecated)

bccReleaseIC[7A) AS+210 Release input channel
(deprecated)

bccReleaseIW 16[178) AS+211 Release input word 16ibt
(deprecated)

bccReleaseQC[7) AS+212 Release output channel
(deprecated)

bccReleaseQW 16[178) AS+213 Release output word 16bit
(deprecated)

bccReleaseAllICT174) AS+214 Release all input channel
(deprecated)

bccReleaseAllOC[17A AS+215 Release all output channel
(deprecated)

216-299 (reserved)

bccGetR16[218) AS+300 Get 16bit integer register
(deprecated)

bccSetR16[22R AS+301 Set 16bit integer register
(deprecated)

bccGetR32[210 AS+302 Get 32bit integer register
(deprecated)

© 2025 Robox SpA

276

BCC Communication Protocol v 3.10

Symbolic
bccSetR32[20

bccGetRR[218)
bccSetRR[225
bccGetRRE[18)
bccSetRRE[222)
bccGetSR[20
bccSetSR[24

bccReadVarl26R
bccW riteVar(zr)
bccForceVar(z2)
bccReleaseVar(zn
becEnumvar(z49)

bccReleaseAllVars[z68)

bccSafeReadVar[263
bccSafeWriteVar([>N
bccSafeForceVar(ze3)

bcecSafeReleaseVarlzen

bccSaveReleaseAllVars[268)

bccRegisterVarlz68)

bcecUnregisterVar/2ed)

bccUnregisterAllVars[270)

becMonCreate[18

bccMonDestroy/[1e)

Code

AS+303

AS+304

AS+305

AS+306

AS+307

AS+308

AS+309

AS+310
AS+311
AS+312
AS+313
AS+314

AS+315

AS+316
AS+317
AS+318

AS+319

AS+320

AS+321

AS+322

AS+323

324-399
AS+400

AS+401

Description

Set 32bit integer register
(deprecated)

Get real register (double)
(deprecated)

Set real register (double)
(deprecated)

Get real register (float)
(deprecated)

Set real register (float)
(deprecated)

Get string register
(deprecated)

Set string register
(deprecated)

Read value of a variable
Write value of a variable
Force value of a variable
Release value of a variable
Enumerate variables

Release value of all forced
variables

Safe read value of a variable
Safe write value of a variable
Safe force value of a variable

Safe release value of a
variable

Safe release value of all
forced variables

Register a dynamic variable

Un-register a dynamic
variable

Un-register all dynamic
variables

(reserved)
Create monitor

Destroy monitor

© 2025 Robox SpA

Miscellaneus 277

Symbolic
becMonStart[eh
bccMonStop|[ed)
bccMonStatus e
bccMonList[+e2)
bccMonQuick[19h)
becMonWd[198)

bccMonW rite [198)

bccMonStatInfo[1ed)

becOscCreatel20n

bccOscDestroy/20)
becOscStart[20

bccOscStop(ad

bccOscStatus[z1M

bccOscStatInfol 21

becOscWdlzd

bccGetAlarml 260
becSetAlarml's™

bccResetAlarm[sM

bccGetDateTime[38Y
bccSetDateTime [381
bccSoftwareReset[s

bccHardwareReset[s

bccSysinfol7sh
bccGetMode[740
becSetModelsN

Code
AS+402
AS+403
AS+404
AS+405
AS+406
407
AS+408

AS+409

410-419
AS+420
AS+421

AS+422

AS+423

AS+424
AS+425

AS+426

427
428-499
AS+500
AS+501
AS+502
AS+503
AS+504
AS+505
AS+506
AS+507
AS+508

AS+509

Description

Start monitor data stream
Stop monitor data stream
Query monitor status
Query monitor list

Quick monitor

Monitor watchdog
Monitor write

Query monitors statistical
information

(reserved)
Create oscilloscope
Destroy oscilloscope

Start oscilloscope data
stream

Stop oscilloscope data
stream

Query oscilloscope status
Query oscilloscope list

Query oscilloscopes
statistical information

Oscilloscope watchdog
(reserved)

Get alarm stack

Set user alarm

Reset alarm stack

Get current date and time
Set current date and time
Request a software reset
Request a hardware reset
Query system information
Get current mode

Set current mode

© 2025 Robox SpA

278

BCC Communication Protocol v 3.10

Symbolic

bccAutoConfigleh

bccCMosReset[s

bccSysProcesslList
bccProductInfo

becAlarmHInfo 50
bccAlarmHList[24%
bccAlarmHCmd [2%

becAsciiCmd[7:0
becAlarmSInfolsf
bccAlarmSGet[s

bccAlarmSList[s
bccAlarmSCmd|[240

bccResolveProcObject[s
bccAlarmHListE[260

bccOOW SessionBegin[721
bccOOW SessionEnd[73Y

bccOOW SessionQueryInfol 7

bccNetlogin (200

bccNetlogout[2o0
bceNetUserList[200

bceNetUserCreate[199)
bccNetUserDelete [163)

bcecNetUserChange[9h)

Code
AS+510

AS+511

AS+512

AS+513

AS+514

AS+515
AS+516
AS+517

AS+518

AS+519

AS+520

AS+521
AS+522
AS+523
AS+524
525-529
AS+530
AS+531

AS+532

533-599
AS+600
AS+601
AS+602
AS+603
AS+604

AS+605

Description
(reserved)

Request device (self) auto
configuration

Request a CMOS Ram reset

Query device system process
list

Query product specific
information

Query alarm history
Get alarm history
Command for alarm history

Execute a generic ASCII
command

Query alarm stack
information

Query single alarm stack
entry

Query all alarm stack entries
Command for alarm stack
Resolve /proc object.

Get enhanced alarm history
(reserved)

Begin an OOW session

End an OOW session

Query information for an
OOW session

(reserved)

Network login
Network logout
Query user list
Create new user
Delete existing user

Change existing user
settings

© 2025 Robox SpA

Miscellaneus 279

Symbolic Code Description
AS+606 (reserved; ex
bccNetMptSave)
AS+607 (reserved; ex
bccNetMptLoad)
becNetInfo[20 AS+608 Query network information
bccNetClientList(202) AS+609 Query client list
bceNetClientKill[200) AS+610 Kill a specific client
bccNetStats[20h) AS+611 Query network statistics
bccNetClientKasSessionBegin AS+612 Start a keep alive session for
205 the client
bccNetClientKasSessionEnd[2081 AS+613 Stop a keep alive session for
the client
bccNetClientKasSessionInfol2of AS+614 Query info for a keep alive
session for the client
615-699 (reserved)
bccProcesslList[sN AS+700 List available remote process
bccProcessinfol e AS+701 Query process specific
information
bccProcessDbgCmd|[s™ AS+702 Execute a process debug
command
bccProcessGetTrace[e AS+703 Ask trace information for a
process
bccProcessStatus[e AS+704 Ask R/T status for a process
bccProcessCmd |50 AS+705 Execute a process command
bccProcessFlashinfole AS+706 Query process flash
information
bccProcessInspects AS+707 Inspect contents for a
process
bccProgressGetDebugContext AS+708 Query debug context for a
59 process
709 (reserved)
bccDebugStart[700 AS+710 Start a debug session
bccDebugStopl7M AS+711 Stop a debug session
bccDebugWd| 48Y 712 Debug session watchdog
713-719 (reserved)
bccBreakpAdd[4o AS+720 Add a breakpoint

© 2025 Robox SpA

280

BCC Communication Protocol v 3.10

Symbolic

becBreakpDell 40
bccBreakplList/ s
becBreakplInfol e

bccBreakpStatus[ea
bccReportinfolzsh
bccReportList[22R

bccReportCmd /(223

bccSysReportInfolzi

bccSysReportList[228)

bccSysReportCmd 28
bccOsAttachedFList[5

bccCanObjRead[29)

bccCanObjWrite [132)
becCanNmtRead|[13

bccCanNmtW rite [138)
bccCanEmcyRead[2h
bccCanEmeylInfol 1
bccCanRbxChDiag[+20)

bccCanRbxW sDiag[2

bccCanPdoRead[2R

bccCanC4021Info[18)

bccCoeObjRead (28]
bccCoeObjWrite 3R

Code
AS+721
AS+722

AS+723

AS+724
725-729
AS+730
AS+731
AS+732

AS+733

AS+734
AS+735
AS+736
737-749
AS+750
AS+751

AS+752

AS+753

AS+754

AS+755

AS+756

AS+757

AS+758

AS+759

AS+760

AS+761

Description
Delete multiple breakpoint
List defined breakpoints

Ask information for a
breakpoint

Ask status for a breakpoint
(reserved)

Query report information
Get report

Command for report

Query system report
information

Get system report
Command for system report
List OS attached functions
(reserved)

Read a CANopen object
Write a CANopen object

Read one or more CANopen
NMT

Write one or more CANopen
NMT

Read a CANopen EMCY
message

Query CANopen EMCY
information

Query Robox CANopen
channel diagnostic

Query Robox CANopen
workstation diagnostic

Read element from Tx/Rx
CANopen PDO

Query CANopen C402
information

Read a COE object

Write a COE object

© 2025 Robox SpA

Miscellaneus 281

Symbolic
bcecEcatNmtRead[+28)

bccEcatNmtW rite [139)

bccObjBlockList[ss0

bccladTasklLoad[180)
becLadTaskSave[rsd)
becladLliveload[+sN
becladLiveTest[sA
becLadLive Confirm[1eh
becladLiveCancell 179

becLadLiveWd[ed)

bccladMonStart[8d)

bccLadMonRestart/[s3)

bcecladMonStop[ied)
becLadMonWd[881

bccLadMonStatus[e)

bccFbReadlocalEntry[s™

bccFbW ritelocalEntry[1o
bccFbReadlocalNmt[o8y

bccFbW riteLocalNmt[118)

bccFbWrriteLocalEntryE[)

bccFbReadCoeEntry[oo

bccFbW rite Coe Entry[102)

Code
AS+762
AS+763
764-769
AS+770
771-799
AS+800
AS+801
AS+802
AS+803
AS+804
AS+805
806
807-809
AS + 810
AS + 811
AS + 812
813
AS + 814
815-899
AS + 900
AS +901

AS + 902

AS +903

AS + 904

905-909

AS + 910

AS +911

Description

Read an EtherCAT NMT
Write an EtherCAT NMT
(reserved)

List object blocks
(reserved)

Load ladder task to device
Save ladder task from device
Load live changes

Start live changes testing
Confirm live changes

Cancel live changes

Live changes watchdog
(reserved)

Start ladder monitor
Restart ladder monitor
Stop ladder monitor

Ladder monitor watchdog
Ladder monitor status
(reserved)

Read entry (field bus, Local)
Write entry (field bus, Local)

Read NMT status (field bus,
Local)

Write NMT command (field
bus, Local)

Write extended entry (field
bus, Local)

(reserved field bus)

Read entry (field bus,
EtherCAT/COE)

Write entry (field bus,
EtherCAT/COE)

© 2025 Robox SpA

282

BCC Communication Protocol v 3.10

Symbolic

bccFbReadEcatNmt[er™

bccFbW rite EcatNmt[s

bccFbW rite CoeEntryE 100

bccFbReadCanEntryl s

bccFbW riteCanEntry[eoN

bccFbReadCanNmt/[e

bccFbW rite CanNmt[+12)

bccFbW rite CanEntryE 100

bccFbReadIF[esh
becFbW riteIF[+1d)

bccFbResolveProcObj
bccRpeAxesGroupResolve [244)
bccRpeAxesGrouplInfolzsh

bccRpeAxesGrouplist/2:8)

bccRpeAxesGroupPositions |20

bccRpe GASessionBegin[232)

bccRpeGASessionEnd|[230

bccRpe GASessionW d[24)

bccRpeGASessionObjload 240

Code

AS +912

AS + 913

AS +914

915-919

AS + 920

AS +921

AS + 922

AS +923

AS + 924

925-949
AS + 950
AS + 951
AS + 952
961-999
AS + 1000

AS + 1001

AS + 1002

AS + 1003

1003-1099

AS + 1100

AS +1101

1102

AS + 1103

Description

Read NMT status (field bus,
EtherCAT)

Force NMT status (field bus,
EtherCAT)

Write extended entry (field
bus, EtherCAT/COE)

(reserved field bus)

Read entry (field bus,
CANopen)

Write entry (field bus,
CANopen)

Read NMT status (field bus,
CANopen)

Write NMT command (field
bus, CANopen)

Write extended entry (field
bus, CANopen)

(reserved field bus)

Read interface information
Write interface information
Resolve /proc object.
(reserved field bus)
Resolve an axes group

Get information for an axes
group

List available axes groups

Query positions for an axes
group

(reserved for RPE)

Begin a group autority
session

End a group autority session

Send a group autority
session watchdog

Load an object to a group
authority session

© 2025 Robox SpA

Miscellaneus 283

Symbolic

bccRpe GASessionObjSave [248)

Code

AS + 1104

bccRpeGASessionObjStatus(z21 AS + 1105

bccRpe GASessionObjiCmd [233)

bccRpe GASessionJogCmd [238)

AS + 1106

AS + 1107

bccRpe GASessionUpdateObjPoi AS + 1108
ntP| 247

bccRpe GASessionUpdateObjSt AS + 1109

eplnlinePointP[248)

NACK error codes

1011-1499
1500-1999

2000-2099

2100-7999

8000-19999

20000-32767

Description

Save an object from a Group
Authority session

Query status for a object in
a group authority session

Command for an object in a
group autority session

JOG command for an object
in @ Group Autority session

Update positions for a
object's point in a Group
Autority session

Update positions for an

object's step inline pointin a

Group Autority session
(reserved for RPE)
(reserved for XPL)

(reserved for Recipe
Manager)

(reserved)

(available for user
messages)

(reserved)

General use and standard error codes, related to message bccNack[+ed.

Some NACK code, in specific data, can have some extra informations/data or different

meaning.

Label Value
0-99

nackMissingArgs 100

nacklllegalArgs 101

nackWrongCommand 102

Description Extra (#1)

Reserved ROBOX SPA

[Remote] One or Y
more missing
arguments

[Remote] One or Y
more illegal
arguments

[Remote] Command
not recognized or not
supported

© 2025 Robox SpA

284

BCC Communication Protocol v 3.10

Label

nackInvalidChannel

nackSystemBusy

nacklllegalMode

nackMemoryFull

nackResourceBusy

nackTimeout

nackNotImplemented

nackFileExist

nackWriteError

nackAborted

nackFileNotExist

nacklllegalLength

nacklIllegalDevice

nackUnformattedDevi
ce

nackSameFile

nackOpenError

Value

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

Description

[Remote] Invalid
channel

[Remote] System
busy in order to
handle the command

[Remote] Current
mode does not allow
the command

[Remote] Memory full
in handling the
command

[Remote] Required
resource is not
available (could be in
use)

[Remote]
Operation/command
execution expired

[Remote] Command
recognized but not
yet implemented
(usually in a under
development
software / device).

[Remote] File already
exist

[Remote] Error writing
[Remote]
Operation/command
execution aborted

[Remote] File does
not exist

[Remote] --obsolete
-- yse nacklllegalArgs

[Remote] Illegal
device

[Remote] Device is
not correctly
formatted

[Remote] File is the
same

[Remote] Open error

Extra (#1)

© 2025 Robox SpA

Miscellaneus

Label
nackCoffMissingRelTa
b

nackCoffNo386Code

nackCoffUnresolvedSy
m

nackBadTasklInit

nackReadOnly
nackWriteOnly
nackCloseError

nackBackupError

nackReadError

nackTooMany

nackTooFew

nackOutOfResource

nackDataOverflow

nackDataUnderflow

nackNotFound

nackSizeMismatch

nackOffsetMismatch

nackTxError

nackRxError

nackBadBif16

Value

119

120

121

122

123
124
125
126

127

128

129

130

131

132

133

134

135

136

137

138

Description Extra (#1)

[Remote] Missing
relocation table in
COFF

[Remote] COFF is not
for Intel 386 platform

[Remote] COFF
contains unresolved
symbols

[Remote] Error in task
initialization

[Remote] Read only
[Remote] Write only
[Remote] Close error

[Remote] Backup
error

[Remote] Error
reading

[Remote] Too many
error

[Remote] Too few
error

[Remote] Out of
resource

[Remote] Data
overflow

[Remote] Data
underflow

[Remote] Not found
(subject)

[Remote] Size
mismatch

[Remote] Offset
mismatch

[Remote] General
transmission error

[Remote] General
reception error

[Remote]
Bad/malformed BIF16

285

© 2025 Robox SpA

286

BCC Communication Protocol v 3.10

Label

nackTooNested

nackNotProgrammed

nackObsolete

nackSameData

nackDifferentData

nackCantForce
nackCantRelease

nackNotAuthorized

nackExists

nacklllegalDebug

nackNotActive

nackAlreadyActive

nackGeneralError

nackUserRequest

nackInternalError

nackRequestError

nackSeqMismatch

nackDeviceError

nackUnreachDestinati

on

nackUnreachDestinati

onCH

nackDeviceFull

Value

139

140

141

142

143

144
145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

Description

[Remote] Too many
nested

[Remote] Not
programmed

[Remote] Obsolete
command

[Remote] Same data

[Remote] Different
data

[Remote] Cant force

[Remote] Can release

[Remote] Not
authorized

[Remote] Already
exist

[Remote] Illegal
debug (session)

[Remote] Not active

[Remote] Already
active

[Remote] General
error

Extra (#1)

Y

[Remote] Request by Y

user

[Remote] Internal
error

[Remote] Request
error

[Remote] Sequence
mismatch

[Remote] Device
(generic) error

[Remote]
Unreachable
destination

[Remote]
Unreachable
destination channel

[Remote] Device full

Y

Y

© 2025 Robox SpA

Miscellaneus

Label
nacklIllegalFile

nackDisconnected

nackConnected
nackEmpty
nackNotEmpty

nackFolderExist

nackFolderNotExist

nacklllegalFolder

nackDeviceNotFound

nackDeviceNotReady

nackIsAFolder

nackIsNotAFolder
nackBitAccessDenied
nackBitAccessNeeded
nackInterfaceNotFoun

d
nackInterfaceNotRead
y

nackKeyMismatch

nackDataMismatch

nackDeleteError

nacklllegalVarsetld

nackRpeNotInstalled

nackBusy

nackNotBusy

Value
160

161

162
163
164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

Description Extra (#1)
[Remote] Illegal file

[Remote]
Disconnected

[Remote] Connected
[Remote] Empty
[Remote] Not empty

[Remote] Folder
already exist

[Remote] Folder does
not exist

[Remote] Illegal folder

[Remote] Device not
found

[Remote] Device not
ready

[Remote] Is a folder

[Remote] Is not a
folder

[Remote] Bit access
denied

[Remote] Bit access
needed

[Remote] Interface
not found

[Remote] Interface
not ready

[Remote] Key
mismatch

[Remote] Data
mismatch

[Remote] Delete error

[Remote] Illegal
variable set ID

[Remote] RPE
firmware is not
installed
[Remote] Busy

[Remote] Not busy

287

© 2025 Robox SpA

288

BCC Communication Protocol v 3.10

Label
nackExpired

nacklllegalDataType

nackNotInitialized

nackAlreadylnitialized

nacklllegalContext

nackXplINotInstalled

nackLocalFileNotExist

nackLocalFileExist

nackLocalFileOpenErr
or

nackLocalFileReadErro
.

nackLocalFileWriteErr
or

nackLocalFileBackupEr
ror

nackLocalMemoryFull

nackLocalFileSeekErro
-

nackLocalFolderExist

nackLocalFolderNotExi
st

nackLocalDisconnecte
d

nackLocalRxError

nackLocalTxError

Value
183

184

185

186

187

188

189-1999

2000-2999

3000

3001
3002

3003

3004

3005

3006
3007

3008
3009

3010

3011

3012

Description
[Remote] Expired

[Remote] Illegal data
type

[Remote] Not
initialized

[Remote] Already
initialized

[Remote] Illegal
context

[Remote] XPL
firmware is not
installed

Reserved Robox SpA
(remote usage)

Reserved Robox SpA
(remote firmware
usage)

[Local] File does not
exist

[Local] File exist

[Local] Error opening
the file

[Local] Error reading
the file

[Local] Error writing
the file

[Local] Error in file
backup

[Local] Memory full

[Local] Error
accessing the file

[Local] Folder exist

[Local] Folder does
not exist

[Local] Disconnected
[Local] General RX
error

[Local] General TX
error

Extra (#1)

© 2025 Robox SpA

Miscellaneus 289

Label Value Description Extra (#1)
nackLocalTimeout 3013 [Local] Timeout
nackLocalAborted 3014 [Local] Aborted
nackLocallllegalArgs 3015 [Local] Illegal
arguments
nackLocalSegMismatc 3016 [Local] Sequence
h mismatch
nackLocalDataUnderfl 3017 [Local] Data
ow underflow
nackLocalDataOverflo 3018 [Local] Data overflow
w
nackLocalOffsetMisma 3019 [Local] Offset
tch mismatch
nackLocalBadBif16 3020 [Local]
Bad/malformed BIF16
nackLocalSizeMismatc 3021 [Local] Size mismatch
h
nackLocalClientBusy 3022 [Local] Client busy
nackLocalUnreachDes 3023 [Local] Unreachable
tination destination
3024-4095 Reserved Robox SpA
(local usage)
4096-0x7FFF Free for user
applications
0x8000-0xFFFF Reserved Robox SpA

(#1) Extra data is not mandatory for any message and it should considered as "may be an extra
data".

Standard variables

Standard variable that any device/connection using BCC protocol should provide.

Type (code) Base size Description IdData Raw data
(parameters)
0x0000 (not available -
special code)
0x0001-0x0006 (reserved)
0x0007 us Bit value for 16bit U16 Parameter U8 Bit value (0=0
integer index N=1)
parameter U8 Bit index (0-
15)

© 2025 Robox SpA

290

BCC Communication Protocol v 3.10

Type (code)

0x0008

0x0009

0x000A

0x000B

0x000C

0x000D

0x000E

0x000F

0x0010

0x0011

Base size

us

us

us

us

us

us

us

us

us

us

Description

Bit value for 32bit

integer
parameter

Bit value for 64bit

integer
parameter

Bit value for 16bit

integer axis
parameter

Bit value for 32bit

integer axis
parameter

Bit value for 64bit

integer axis
parameter

Bit value for non
volatile 64bit
integer register

Bit value for
volatile 64bit
integer register

IdData
(parameters)

U16 Parameter
index

U8 Bit index (0-
31)

U16 Parameter
index

U8 Bit index (0-
63)

Ul6 Parameter
index

U16 Axis index
U8 Bit index (0-
15)

U16 Parameter
index

U16 Axis index

U8 Bit index (0-
31)

U16 Parameter
index

U16 Axis index
U8 Bit index (0-
63)

U16 Register
index

U8 Bit index (0-
31)

U16 Register
index

U8 Bit index (0-
31)

Bit value for 64bit U32 Memory

memory

Bit value for

logical 16bit input

word

Bit value for

logical 32bit input

word

address

U8 Bit index (0-
31)

U1l6 Word index

U8 Bit index (0-
15)

U16 Word index

U8 Bit index (0-
31)

Raw data
U8 Bit value (0=0

N=1)

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

© 2025 Robox SpA

Miscellaneus 291

Type (code)

0x0012

0x0013

0x0014

0x0015

0x0016

0x0017

0x0018

0x0019

0x001A

0x001B

0x001C

0x001D

Base size

us

us

us

us

us

us

us

us

us

us

us

us

Description

Bit value for
logical 16bit
output word

Bit value for
logical 32bit
output word

Bit value for
physical 16bit
input word

Bit value for
physical 32bit
input word

Bit value for
physical 16bit
output word

Bit value for
physical 32bit
output word

Bit value for non
volatile 16bit
integer register

Bit value for non
volatile 32bit
integer register

Bit value for
volatile 16bit
integer register

Bit value for
volatile 32bit
integer register

Bit value for 8bit
memory

Bit value for 16bit

memory

IdData
(parameters)

U16 Word index

U8 Bit index (0-
15)

U16 Word index

U8 Bit index (0-
31)

U1l6 Word index
U8 Bit index (0-
15)
U1l6 Word index
U8 Bit index (0-
31)
Ul6 Word index
U8 Bit index (0-
15)
Ul6 Word index
U8 Bit index (0-
31)

U16 Register
index

U8 Bit index (0-
15)

U1l6 Register
index

U8 Bit index (0-
31)

U16 Register idex

U8 Bit index (0-
15)

U16 Register
index

U8 Bit index (0-
31)

U32 Memory
address

U8 Bit index (0-7)

U332 Memory
address

U8 Bit index (0-
15)

Raw data

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

© 2025 Robox SpA

292

BCC Communication Protocol v 3.10

Type (code)

0x001E

0x001F

0x0020

0x0021

0x0022

0x0023

0x0024

0x0025-0x002F

0x0030

0x0031

0x0032

0x0033

0x0034

0x0035

0x0036-0x003F

0x0040

0x0041

Base size

us

us

us

us

DBL

DBL

DBL

us

us

us

us

132

132

U8 * R

ule * R

Description

IdData
(parameters)

Bit value for 32bit U32 Memory

memory

Bit value for
alarm mask

Timer result (Q)
Timer enable
(EN)

Timer elapsed
time (ET)

Timer preset (PT)

Timer preset 2
(PT2)

(reserved)

address

U8 Bit index (0-
31)

U16 Alarm mask
index

U8 Bit index (0-
31)

U332 Memory
address

U332 Memory
address

U332 Memory
address

U332 Memory
address

U332 Memory
address

Counter up result U32 Memory

(QU)

Counter down
result (QD)

Counter enable
up (CU)

Counter enable
down (CD)

Counter current
value (CV)

Counter preset
value (PV)

(reserved)

Logical unsigned
8bit

Logical unsigned
16bit

address

U332 Memory
address

U332 Memory
address

U332 Memory
address

U332 Memory
address

U332 Memory
address

U16 Logical Id
U32 Item Id

U8 Repeat
counter (R)

U16 Logical Id
U32 Item Id

Raw data

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

U8 Boolean value

U8 Boolean value

DBL Time value

[ms]

DBL Time value
[ms]

DBL Time value
[ms]

U8 Boolean value

U8 Boolean value

U8 Boolean value

U8 Boolean value

132 Counter

value

132 Counter
value

U8 Value 0
U8 Value 1

U16 Value 0
U1l6 Value 1

© 2025 Robox SpA

Miscellaneus 293
Type (code) Base size Description IdData Raw data
(parameters)
U8 Repeat
counter (R)
0x0042 U32 *R Logical unsigned U16 Logical Id U32 Value 0
32bit U32 Item Id U32 Value 1
U8 Repeat
counter (R)
0x0043 U4 * R Logical unsigned U16 Logical Id U64 Value 0
6abit U32 Item Id U64 Value 1
U8 Repeat
counter (R)
0x0044 I8 * R Logical signed U16 Logical Id 18 Value O
8bit U32 Item Id I8 Value 1
U8 Repeat
counter (R)
0x0045 I16 * R Logical signed U16 Logical Id 116 Value 0
16bit U32 Item Id 116 Value 1
U8 Repeat
counter (R)
0x0046 132 * R Logical signed U16 Logical Id 132 Value O
32bit U32 Item Id 132 Value 1
U8 Repeat
counter (R)
0x0047 164 * R Logical signed U16 Logical Id 164 Value 0
6abit U32 Item Id 164 Value 1
U8 Repeat
counter (R)
0x0048 DBL * R Logical double U16 Logical Id DBL Value 0
64bit U32 Item Id DBL Value 1
U8 Repeat
counter (R)
0x0049 FLT * R Logical float 32bit U16 Logical Id FLT Value O
U32 Item Id FLT Value 1
U8 Repeat
counter (R)
0x004A us Bit value for U16 Logical Id U8 Bit value (0=0
logical unsigned N=1)

8bit

U32 Item Id

U8 Bit index (0-7)

© 2025 Robox SpA

294

BCC Communication Protocol v 3.10

Type (code)

0x004B

0x004C

0x004D

0x004E

0x004F

0x0050

0x0051

0x0052

0x0053-0x0063

0x0064

0x0065

Base size Description

us Bit value for
logical unsigned
16bit

us Bit value for
logical unsigned
32bit

us Bit value for
logical unsigned
64bit

us Bit value for
logical signed
8bit

us Bit value for
logical signed
16bit

us Bit value for
logical signed
32bit

us Bit value for
logical signed
64bit

STRZ Logical string (0
termined)

(reserved)

Uul6 * R Logical 16bit
input word

U322 *R Logical 32bit
input word

IdData
(parameters)

U16 Logical Id
U32 Item Id

U8 Bit index (0-
15)

U16 Logical Id
U32 Item Id

U8 Bit index (0-
31)

U16 Logical Id
U32 Item Id

U8 Bit index (0-
63)

U16 Logical Id
U32 Item Id

U8 Bit index (0-7)

U16 Logical Id
U32 Item Id

U8 Bit index (0-
15)

U16 Logical Id
U32 Item Id

U8 Bit index (0-
31)

U16 Logical Id
U32 Item Id

U8 Bit index (0-
63)

U16 Logical Id
U32 Item Id

U16 Size (\O
included)

Ul6 Word index

U16 Repeat
counter (R)

Ul6 Word index

Raw data

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

U8 Bit value (0=0
N=1)

U8 x size String
value

U16 Input word O
U1l6 Input word 1

U32 Input word O
U32 Input word 1

© 2025 Robox SpA

Miscellaneus 295

Type (code)

0x0066

0x0067

0x0068

0x0069

0x006A

0x006B

0x006C

0x006D

0x006E

0x006F

0x0070-0x00C7

0x00C8

Base size

ule * R

U32 *R

us

us

ule * R

U32 *R

Uule * R

U32 *R

us

us

I16 * R

Description

Logical 16bit
output word

Logical 32bit
output word

Logical input
channel

Logical output
channel

Physical 16bit
input word

Physical 32bit
input word

Physical 16bit
output word

Physical 32bit
output word

Physical input
channel

Physical output
channel

(reserved)

Non volatile 16bit
integer register

IdData
(parameters)

U1l6 Repeat
counter (R)

U1l6 Word index

U1l6 Repeat
counter (R)

Ul6 Word index

U16 Repeat
counter (R)

U16 Channel
index

U16 Channel
index

U16 Word index

Ul6 Repeat
counter (R)

U16 Word index

U1l6 Repeat
counter (R)

U1l6 Word index

U1l6 Repeat
counter (R)

U1l6 Word index

U16 Repeat
counter (R)

U16 Channel
index

U16 Channel
index

U1l6 Register
index

U16 Repeat
counter (R)

Raw data

U16 Output word
0

U16 Output word
1

U32 Output word
0

U32 Output word
1

U8 Channel state
(0=off other=o0n)

U8 Channel state
(0=off other=on)
U16 Input word O
U16 Input word 1

U32 Input word 0
U32 Input word 1

U16 Input word O
U16 Input word 1

U32 Output word
0

U32 Output word
1

U8 Channel state
(0=off other=on)

U8 Channel state
(0=off other=on)

116 Register
value 0

116 Register
value 1

© 2025 Robox SpA

296

BCC Communication Protocol v 3.10

Type (code)

0x00C9

0x00CA

0x00CB

0x00CC

0x00CD

0x00CE

0x00CF

0x00D0

Base size

I32 * R

DBL * R

FLT * R

STRZ

I16 * R

I32 * R

DBL * R

FLT * R

Description

Non volatile 32bit
integer register

Non volatile 64bit
real register
(double)

Non volatile 32bit
real register
(float)

Non volatile
string register (0

termined)

Volatile 16bit

integer register

Volatile 32bit

integer register

Volatile 64bit real
register (double)

Volatile 32bit real
register (float)

IdData
(parameters)

U16 Register
index

U1l6 Repeat
counter (R)

U1l6 Register
index

U16 Repeat
counter (R)

U16 Register
index

U1l6 Repeat
counter (R)

U16 Register
index

U16 Size (\O
included)

U16 Register
index

U1l6 Repeat
counter (R)

U16 Register
index

Ul6 Repeat
counter (R)

U1l6 Register
index

U16 Repeat
counter (R)

U16 Register
index

U1l6 Repeat
counter (R)

Raw data

132 Register
value 0

132 Register
value 1

DBL Register
value 0

DBL Register
value 1

FLT Register
value 0

FLT Register
value 1

U8 x size String
value

116 Register
value 0

116 Register
value 1

132 Register
value 0

132 Register
value 1

DBL Register
value 0

DBL Register
value 1

FLT Register
value 0

FLT Register
value 1

© 2025 Robox SpA

Miscellaneus 297

Type (code)

0x00D1

0x00D2

0x00D3

0x00D4

0x00D5

0x00D6

0x00D7

0x00D8

0x00D9

Base size

STRZ

I16 * R

I32 *R

DBL * R

FLT * R

I16 * R

I32 * R

DBL * R

FLT * R

Description

Volatile string
register (0
termined)

16bit integer
parameter

32bit integer
parameter

64bit real
parameter
(double)

32bit real
parameter (float)

16bit integer axis
parameter

32bit integer axis
parameter

64bit real axis
parameter
(double)

32bit real axis
parameter (float)

IdData
(parameters)

U16 Register
index

U16 Size (\O
included)

U16 Parameter
index

U1l6 Repeat
counter (R)

U16 Parameter
index

U16 Repeat
counter (R)

U1l6 Parameter
index

U1l6 Repeat
counter (R)

U16 Parameter
index

U16 Repeat
counter (R)

U16 Parameter
index

U16 Axis first

U16 Axis repeat
counter (R)

U1l6 Parameter
index

U16 Axis index

U1l6 Axis repeat
counter (R)

Ul6 Parameter
index

U16 Axis index

U1l6 Axis repeat
counter (R)

U16 Parameter
index

Raw data

U8 x size String
value

116 Register
value 0

116 Register
value 1

132 Register
value 0

132 Register
value 1

DBL Register
value 0

DBL Register
value 1

FLT Register
value 0

FLT Register
value 1

116 Param value
for axes index+0

116 Param value
for axes index+1

132 Param value
for axes index+0

132 Param value
for axes index+1

DBL Param value
for axes index+0

DLB Param value
for axes index+1

FLT Param value
for axes index+0

© 2025 Robox SpA

298

BCC Communication Protocol v 3.10

Type (code)

0x00DA-0x00EO

0x00E1

0x00E2

O0x00E3

0x00E4

0x00ES5

0x00E6

0x00E7

0x00E8-0x012B

0x012C

Base size

U32 *R

u32 *

STRZ

164 * R

I64 * R

I64 * R

164 * R

DBL

Description

(reserved)

32bit alarm mask

Alarm code
(alarms stack)

Alarm text
(alarms stack)

Non volatile 64bit

integer register

Volatile 64bit
integer register

64bit integer
parameter

64bit integer axis
parameter

(reserved)

System time (us,
from boot)

IdData
(parameters)

U16 Axis index

U1l6 Axis repeat
counter (R)

U1l6 Alarm index

U1l6 Repeat
counter (R)

U16 Alarm index

U16 Repeat
counter (R)

U16 Alarm index

U16 Size (\O
included)

U1l6 Register
index

U16 Repeat
counter (R)

U16 Register
index

U1l6 Repeat
counter (R)

U16 Parameter
index

U1l6 Repeat
counter (R)

U16 Parameter
index

U16 Axis index

U16 Axis repeat
counter (R)

Raw data

FLT Param value
for axes index+1

U32 Register
value 0

U32 Register
value 1

U32 Alarm code
atindex + 0

U32 Alarm code
atindex +1

U8 x size String
value

164 Register
value 0

164 Register
value 1

164 Register
value 0

164 Register
value 1

164 Register
value 0

164 Register
value 1

164 Param value
for axes index+0

164 Param value
for axes index+1

DBL Time value

© 2025 Robox SpA

Miscellaneus 299

Type (code)

0x012D-0x01F3

0x01F4

0x01F5

0x01F6

0x01F7

0x01F8

0x01F9

Ox01FA

0x01FB

0x01FC

0x01FD

Base size

U8 * R

ule * R

U32 *R

DBL * R

FLT * R

U8 * R

Uule * R

I8 * R

I16 * R

I32 * R

Description

(reserved)

Unsigned
memory 8bit

Unsigned
memory 16bit

Unsigned
memory 32bit

Memory double
(64bit)

Memory float
(32bit)

I/0O port 8bit

I/0O port 16bit

Signed memory
8bit

Signhed memory
16bit

Sighed memory
32bit

IdData

(parameters)

U332 Memory
address

U8 Repeat
counter (R)

U332 Memory
address

U8 Repeat
counter (R)
U332 Memory
address

U8 Repeat
counter (R)

U332 Memory
address

U8 Repeat
counter (R)

U332 Memory
address

U8 Repeat
counter (R)
U332 Memory
address

U8 Repeat
counter (R)

U332 Memory
address

U8 Repeat
counter (R)

U332 Memory
address

U8 Repeat
counter (R)
U332 Memory
address

U8 Repeat
counter (R)

U332 Memory
address

Raw data

U8 Byte 0
U8 Byte 1

Ui6 Word O
Ul6 Word 1

U32 Dword O
U32 Dword 1

DBL Double 0
DBL Double 1

FLT Float O
FLT Float 1

U8 I/O port 0
state

U8 I/O port 1
state

U16 1/0 port 0
state

U1l6 I/O port 1
state

I8 Byte O
I8 Byte 1

116 Word O
116 Word 1

132 Dword O
132 Dword 1

© 2025 Robox SpA

300

BCC Communication Protocol v 3.10

Type (code)

Ox01FE

Ox01FF

0x0200

0x0201

0x0202

0x0203

0x0204

0x0205

0x0206

0x0207

0x0208

Base size

U4 * R

I64 *R

U8 * R

Ule * R

U32 *R

U4 * R

I8 * R

I16 * R

I32 * R

I64 * R

DBL * R

Description

Unsigned
memory 64bit

Signed memory
64bit

Dynamic
unsigned 8bit

Dynamic
unsigned 16bit

Dynamic
unsigned 32bit

Dynamic
unsigned 64bit

Dynamic signed
8bit

Dynamic signed
16bit

Dynamic signed
32bit

Dynamic signed
64bit

Dynamic real
(64bit)

IdData

(parameters)

U8 Repeat
counter (R)

U32 Memory

address

U8 Repeat
counter (R)

U332 Memory

address

U8 Repeat
counter (R)

u8[6] VIDD

U8 Repeat
counter (R)

u8[6] VIDD

U8 Repeat
counter (R)

U8[6] VIDD

U8 Repeat
counter (R)

U8[6] VIDD

U8 Repeat
counter (R)

U8[6] VIDD

U8 Repeat
counter (R)

U8[6] VIDD

U8 Repeat
counter (R)

U8[6] VIDD

U8 Repeat
counter (R)

u8[6] VIDD

U8 Repeat
counter (R)

u8[6] VIDD

Raw data

U64 Dword 0
U64 Dword 1

164 Dword 0
164 Dword 1

U8 Value 0
U8 Value 1

U16 Value 0
U16 Valuel

U32 Value 0
U32 Value 1

U64 Value 0
U64 Value 1

I8 Value 0
I8 Value 1

116 Value 0
116 Value 1

132 Value 0
132 Value 1

164 Value 0
164 Value 1

DBL Value 0
DBL Value 1

© 2025 Robox SpA

Miscellaneus 301

Type (code) Base size Description IdData Raw data
(parameters)
U8 Repeat
counter (R)
0x0209 FLT * R Dynamic float u8[6] VIDD FLT Value O
(BeNE) U8 Repeat FLT Value 1
counter (R)
0x020A STRZ Dynamic string u8[6] VIDD U8[size] String
U16 Size (\0 value
included)
0x020B-0x020F (reserved)
0x0210 us Bit for dynamic u8[6] VIDD U8 Bit value (0=0
unsigned 8bit U8 Bit index (0-7) N=1)
0x0211 us Bit for dynamic u8[6] VIDD U8 Bit value (0=0
unsigned 16bit U8 Bit index (0- N=1)
15)
0x0212 us Bit for dynamic u8[6] VIDD U8 Bit value (0=0
unsigned 32bit U8 Bit index (0- N=1)
31)
0x0213 us Bit for dynamic u8[6] VIDD U8 Bit value (0=0
unsigned 64bit US Bit index (0- N=1)
63)
0x0214 us Bit for dynamic u8[6] VIDD U8 Bit value (0=0
signed 8bit US Bit index (0-7) 1)
0x0215 us Bit for dynamic u8[6] VIDD U8 Bit value (0=0
signed 16bit US Bit index (0- N=1)
15)
0x0216 us Bit for dynamic u8[6] VIDD U8 Bit value (0=0
signed 32bit US Bit index (0- N=1)
31)
0x0217 us Bit for dynamic u8[6] VIDD U8 Bit value (0=0

0x0218-0x022F
0x0230-0xFFFE

OXFFFF

Notes:

signed 64bit

(reserved)
(reserved)

(not available -
special code)

U8 Bit index (0-
63)

N=1)

e Variables in range from 0x0200 to Ox02xx are to be considered still as PRELIMINARY.

© 2025 Robox SpA

302 BCC Communication Protocol v 3.10

e Contents of the VIDD field is obtained by registering the variable with the
bccRegisterVarfzsl message and depends on the specific implementation of the connected
device.

e The maximum R value for any variable type is dynamically calculated, in order to fit and
not overflow the standard message data area size (that is 255 byte in protocol V 3,xx).

¢ On requesting a not supported variable, the device will reply with a nacklllegalArgs error.

© 2025 Robox SpA

Index

Index

-A-
Add a breakpoint 40
Alarm handling 23

-B -

bccAbort 164
bccAborted 164
bccAck 164
bccAlarmHCmd 23
bccAlarmHInfo 30
bccAlarmHList 24
bccAlarmHListE 26
bccAlarmSCmd 24
bccAlarmSGet 34
bccAlarmSinfo 31
bccAlarmSList 31
bccAsciiCmd 73
bccAutoConfig 82
bccBreakpAdd 40
bccBreakpDel 49
bccBreakpinfo 60
bccBreakpList 54
bccBreakpStatus 69
bccBusy 164
bccCanC402Info 118
bccCanEmcyinfo 119
bccCanEmcyRead 124
bccCanNmtRead 130
bccCanNmtWrite 136
bccCanObjRead 125
bccCanObjWrite 132
bccCanPdoRead 129
bccCanRbxChDiag 120
bccCanRbxWsDiag 121
bccCheck 164
bccCMosReset 81
bccCoeObjRead 126
bccCoeObjWrite 133
bccCompleted 164
bccData 164
bccDebugCmd 214
bccDebugStart 70
bccDebugStop 71
bccDebugWd 49

bccEcatNmtRead 128
bccEcatNmtWrite 135
bccEndData 164
bccEnumVar 249
bccFbReadCanEntry 87
bccFbReadCanNmt 96
bccFbReadCoeEntry 90
bccFbReadEcatNmt 97
bccFbReadlF 95
bccFbReadLocalEntry 92
bccFbReadLocalNmt 98
bccFbWriteCanEntry 99
bccFbWriteCanEntryE 106
bccFbWriteCanNmt 115
bccFbWriteCoeEntry 102
bccFbWriteCoeEntryE 109
bccFbWriteEcatNmt 86
bccFbWritelF 114
bccFbWriteLocalEntry 104
bccFbWriteLocalEntryE 112
bccFbWriteLocalNmt 116
bccFlashDir 148
bccFlashFileDelete 140
bccFlashFileinfo 150
bccFlashFileLoad 142
bccFlashFileRename 159
bccFlashFileSave 159
bccFlashFolderCreate 137
bccFlashFolderDelete 140
bccFlashFolderinfo 156
bccFlashFormat 141
bccFlashinfo 153
bccFlashinfoByFolder 155
bccFlashinit 138
bccFlashList 158
bccFlashSetAttributes 162
bccFlashTree 158
bccForcelC 168
bccForcelW16 168
bccForceOC 169
bccForceOW16 170
bccForceVar 262
bccGetAlarm 26
bccGetDateTime 38
bccGetlC 171
bccGetlW16 171

303

© 2025 Robox SpA

304 BCC Communication Protocol v 3.10

bccGetMode 74
bccGetOC 172
bccGetOW16 173
bccGetR16 216
bccGetR32 217
bccGetRR 219
bccGetRRF 218
bccGetSR 220
bccHardwareReset 81
bcclBlock 164
bcclLadLiveCancel 179
bccLadLiveConfirm 180
bccLadLiveLoad 181
bccLadLiveTest 187
bccLadLiveWd 189
bccLadMonRestart 183
bccLadMonStart 184
bccLadMonStatus 182
bccLadMonStop 188
bccLadMonWd 188
bccLadTaskLoad 180
bccLadTaskSave 184
bccMonCreate 189
bccMonDestroy 191
bccMonList 192
bccMonQuick 193
bccMonStart 194
bccMonStatinfo 193
bccMonStatus 191
bccMonStop 195
bccMonWd 196
bccMonWrite 196
bccNack 164
bccNetClientKasSessionBegin -+ 205
bccNetClientKasSessionEnd 206
bccNetClientKasSessioninfo 201
bceNetClientKill - 200
bccNetClientList 202
bccNetinfo 203
bceNetLogin 200
bccNetLogut 200
bccNetStats 204
bccNetUserChange 198
bccNetUserCreate 199
bccNetUserDelete 199
bccNetUserlist 202

bccNoData 164
bccObjBlockList 55
bccOOWSessionBegin 72
bccOOWSessionEnd 73
bccOOWSessionQuerylnfo 74
bccOsAttachedFList 57
bccOscCreate 207
bccOscDestroy 208
bccOscStart 209
bccOscStatinfo 213
bccOscStatus 211, 212
bccOscStop 210

bccOscWd 213

bccPing 215

bccPong 215
bccProcessCmd 50
bccProcessDbgCmd 51
bccProcessFlashinfo 62
bccProcessGetDebugContext 59
bccProcessGetTrace 69
bccProcessinfo 63
bccProcessinspect 52
bccProcessList 54
bccProcessStatus 67
bccReadVar 264
bccReady 164
bccRegisterVar 266
bccReleaseAlllC 174
bccReleaseAllOC 174
bccReleaseAllVars 268
bccReleaselC 175
bccReleaselW16 175
bccReleaseOC 176
bccReleaseOW16 176
bccReleaseVar 267
bccReportCmd 225
bccReportinfo 230
bccReportList 227
bccResetAlarm 37
bccResolveProcObject 82
bccRpeAxesGroupinfo 235
bccRpeAxesGroupList 239
bccRpeAxesGroupPositions
bccRpeAxesGroupResolve
bccRpeGASessionBegin
bccRpeGASessionEnd

237
244
232
234

© 2025 Robox SpA

bccRpeGASessiondJogCmd 238
bccRpeGASessionObjCmd 233
bccRpeGASessionObjLoad 241
bccRpeGASessionObjSave 245
bccRpeGASessionObjStatus 242

bccRpeGASessionUpdateObjPointP 247
bccRpeGASessionUpdateObjSteplnlinePointP
bccRpeGASessionWd 248
bccSafeForceVar 263
bccSafeReadVar 265
bccSafeReleaseAllVars
bccSafeReleaseVar 267
bccSafeWriteVar 271
bccSetAlarm 37
bccSetDateTime 38
bccSetMode 83
bccSetOC 177
bccSetOW16 178
bccSetR16 221
bccSetR32 222
bccSetRR 223
bccSetRRF 222
bccSetSR 224
bccSoftwareReset 81
bccSysinfo 75
bccSysReportCmd
bceSysReportinfo
bccSysReportList
bccUnregisterAllVars
bccUnregisterVar 269
bccWait 164

bccWriteVar 270

Begin a group authority session
Begin an OOW session 72

-C -
Cancel live changes 179
Change a network user 198
Command for alarm history 23
Command for alarm stack 24

Command for an object in a group autority session
233

Command for report 225
Command for system report
Confirm live changes 180
Create a flash folder 137

268

226
231
228

270

232

226

246

Index 305
Create a monitor 189
Create a new network user 199
Create an oscilloscope 207
Create and initialize flashes 138
=D -
Data format for process contents inspection 42

Data format for process debug context 47
Data load sequence 18

Data save sequence 16

Date/Time handling 38

Debug and process handling 39

Debug command 214

Debug session watch-dog 49
Delete a breakpoint 49
Delete a flash folder 140
Delete a network user 199
Delete files from a flash folder
Destroy a monitor 191
Destroy a oscilloscope
Device handling 71
Download transfer sequence 14

-E -

End a group authority session
End an OOW session 73
Enumerate variables 249
Ethernet network example 272
Execute a generic ASCIl command 73
Execute a process command 50
Execute a process debug command 51

-F -

Field bus device handling 84

Field bus handling 117

Field bus supported interface type IDs 85
Filed bus entry data types 85

140

208

234

Flash handling 136

Force a variable 262

Force a variable (safe) 263
Force input channel 168
Force input word 16bit 168

Force NMT status to EtherCAT Interface 86
Force output channel 169

Force output word 16bit 170

Format a flash 141

© 2025 Robox SpA

306 BCC Communication Protocol v 3.10

-G -

General handling 164

General messages#bccAbort 165
General messages#bccAborted 165
General messages#bccAck 164
General messages#bccBusy 166
General messages#bccCheck 166
General messages#bccCompleted 167
General messages#bccData 165
General messages#bccEndData 166
General messages#bcciBlock 166
General messages#bccNack 164
General messages#bccNoData 166
General messages#bccWait 167
Get 16bit integer register 216

Get 32bit integer register 217

Get alarm history 24

Get alarm stack 26

Get current date and time 38

Get enhanced alarm history 26

Get float register 218

Get information for an axes group 235
Get input channel 171

Get input word 16bit 171

Get output channel 172

Get output word 16bit 173

Get positions for an axes group 237
Get real register 219

Get report contents 227

Get string register 220

Get system report contents 228

-] -
I/O handling 167
Inspect contents of a process 52

-dJ -
Jog command for an object in a group autority
session 238

-K -

Kill a network client 200

-L -
Ladder diagram handling 179
List available axes groups 239
List available remote process 54
List defined breakpoints 54

List object blocks 55

List OS attached functions 57
Load a file to a flash folder 142
Load a ladder task to memory 180

Load an object to a group authority session 241

Load live changes 181

=M -

Manage flash volumes 146
Messages map 273

Modem network example 273
Monitor handling 189

Monitor specifications 11

Monitor specifications#using 11
Monitor specifications#usingMultiple

=N -

NACK error codes 283
Network handling 197
Network interfaces 272
Network login 200
Network logout 200

-0 -

Oscilloscope handling 206
Oscilloscope specifications 13
Oscilloscope specifications#using

12

13

Oscilloscope specifications#usingMultiple 14

-P -

Ping answer 215

Ping command 215

Protocol conventions 8
Protocol handling 214
Protocol specification#dlc 11
Protocol specification#dst 10
Protocol specification#header 10
Protocol specification#len 11
Protocol specificationtmsg 11
Protocol specification#pid 11
Protocol specification#src 10
Protocol specifications 9

-Q-

Query a keep alive session information of a network

client 201

Query a monitor status 191
Query alarm history 30

Query alarm stack information 31

© 2025 Robox SpA

Index 307

Query all alarm stack entries 31 Read an entry from EtherCAT (CoE) Interface 90
Query an oscilloscope status 211 Read an entry from Local Interface 92

Query CANopen C402 information 118 Read an EtherCAT NMT 128

Query CANopen EMCY message information 119 Read data from Tx/Rx CANopen PDO 129
Query contents from a flash folder 148 Read interface information 95

Query current mode 74 Read NMT status from CANopen Interface 96
Query debug context for a process 59 Read NMT status from EtherCAT Interface 97
Query info for an OOW session 74 Read NMT status from Local Interface 98
Query information for a breakpoint 60 Read one or more CANopen NMT 130

Query information of a file in a flash folder 150 Register a dynamic variable 266

Query information of a flash 153 Register handling 216

Query information of a flash by folder 155 Release a variable 267

Query information of a flash folder 156 Release a variable (safe) 267

Query ladder monitor status 182 Release all input channel 174

Query list of flashes 158 Release all output channel 174

Query list of monitors 192 Release all variables 268

Query list of network clients 202 Release all variables (safe) 268

Query list of network users 202 Release input channel 175

Query list of oscilloscopes 212 Release input word 16bit 175

Query monitor statistics 193 Release output channel 176

Query network information 203 Release output word 16bit 176

Query network statistics 204 Rename a file in a flash folder 159

Query oscilloscopes statistics 213 Report handling 225

Query process flash information 62 Request a CMOS ram reset 81

Query process information 63 Request a hardware reset 81

Query report information 230 Request device auto configuration 82

Query Robox CANopen channel diagnostic 120 Reset alarm stack 37
Query Robox CANopen workstation diagnostic 121 Resolve a /proc object 82

Query runtime status for process 67 Resolve an axes group 244
Query single alarm stack entry 34 Restart ladder monitor 183
Query status for a breakpoint 69 RPE handling 231
Query status for a object in a group authority session _ S -

242

Sawe a file from a flash folder 159

Sawe a ladder task from memory 184

Sawve an object from a group authority session 245
Set 16bit integer register 221

Set 32bit integer register 222

Set attributes in a flash folder 162

Query system information 75

Query system report information 231
Query trace information for process 69
Query tree of flash folders 158

Quick monitor 193

-R- Set current date and time 38
Read a CANopen EMCY message 124 Set current mode 83
Read a CANopen object 125 Set float register 222
Read a COE object 126 Set output channel 177
Read a variable 264 Set output word 16bit 178
Read a variable (safe) 265 Set real register 223
Read an entry from CANopen Interface 87 Set string register 224

© 2025 Robox SpA

308 BCC Communication Protocol v 3.10

Set user alarm 37

Standard variables 289

Start a debug session 70

Start a keep alive session for a network client 205
Start a monitor 194

Start an oscilloscope 209

Start ladder monitor 184

Start live changes testing 187

Stop a debug session 71

Stop a keep alive session for a network client 206
Stop a monitor 195

Stop an oscilloscope 210

Stop ladder monitor 188

-T -

Transfer specifications 14

-U-
Un-register a dynamic variable 269
Un-register all dynamic variables 270

Update positions for an object's point in a group
autority session 247

Update positions for an object's step inline point in a
group autority session 246

Upload transfer sequence 15

-V -
Variable handling 249

-W -

Watchdog for a monitor 196

Watchdog for an oscilloscope 213

Watchdog for group authority session 248
Watchdog for ladder monitor 188

Watchdog for live changes 189

Write a CANopen object 132

Write a COE object 133

Write a monitor 196

Write a variable 270

Write a variable (safe) 271

Write an entry to CANopen Interface 99

Write an entry to EtherCAT (CoE) Interface 102
Write an entry to Local interface 104

Write an EtherCAT NMT 135

Write an extended entry to CANopen Interface 106

Write an extended entry to EtherCAT (CoE) Interface
109

Write an extended entry to Local interfface 112

Write interface information 114

Write NMT command to CANopen Interface 115
Write NMT command to Local Interface 116

Write one or more CANopen NMT

136

© 2025 Robox SpA

	Table of Contents
	General
	General index
	Protocol conventions
	Protocol specifications
	Monitor specifications
	Oscilloscope specifications
	Transfer specifications

	Messages
	Alarm handling
	Command for alarm history
	Command for alarm stack
	Get alarm history
	Get alarm stack
	Get enhanced alarm history
	Query alarm history
	Query alarm stack information
	Query all alarm stack entries
	Query single alarm stack entry
	Reset alarm stack
	Set user alarm

	Date/Time handling
	Get current date and time
	Set current date and time

	Debug and process handling
	Add a breakpoint
	Data format for process contents inspection
	Data format for process debug context
	Debug session watch-dog
	Delete a breakpoint
	Execute a process command
	Execute a process debug command
	Inspect contents of a process
	List available remote process
	List defined breakpoints
	List object blocks
	List OS attached functions
	Query debug context for a process
	Query information for a breakpoint
	Query process flash information
	Query process information
	Query runtime status for process
	Query status for a breakpoint
	Query trace information for process
	Start a debug session
	Stop a debug session

	Device handling
	Begin an OOW session
	End an OOW session
	Execute a generic ASCII command
	Query current mode
	Query info for an OOW session
	Query system information
	Request a CMOS ram reset
	Request a hardware reset
	Request a software reset
	Request device auto configuration
	Resolve a /proc object
	Set current mode

	Field bus device handling
	Field bus supported interface type IDs
	Filed bus entry data types
	Force NMT status to EtherCAT Interface
	Read an entry from CANopen Interface
	Read an entry from EtherCAT (CoE) Interface
	Read an entry from Local Interface
	Read interface information
	Read NMT status from CANopen Interface
	Read NMT status from EtherCAT Interface
	Read NMT status from Local Interface
	Write an entry to CANopen Interface
	Write an entry to EtherCAT (CoE) Interface
	Write an entry to Local interface
	Write an extended entry to CANopen Interface
	Write an extended entry to EtherCAT (CoE) Interface
	Write an extended entry to Local interface
	Write interface information
	Write NMT command to CANopen Interface
	Write NMT command to Local Interface

	Field bus handling
	Query CANopen C402 information
	Query CANopen EMCY message information
	Query Robox CANopen channel diagnostic
	Query Robox CANopen workstation diagnostic
	Read a CANopen EMCY message
	Read a CANopen object
	Read a COE object
	Read an EtherCAT NMT
	Read data from Tx/Rx CANopen PDO
	Read one or more CANopen NMT
	Write a CANopen object
	Write a COE object
	Write an EtherCAT NMT
	Write one or more CANopen NMT

	Flash handling
	Create a flash folder
	Create and initialize flashes
	Delete a flash folder
	Delete files from a flash folder
	Format a flash
	Load a file to a flash folder
	Manage flash volumes
	Query contents from a flash folder
	Query information of a file in a flash folder
	Query information of a flash
	Query information of a flash by folder
	Query information of a flash folder
	Query list of flashes
	Query tree of flash folders
	Rename a file in a flash folder
	Save a file from a flash folder
	Set attributes in a flash folder

	General handling
	I/O handling
	Force input channel
	Force input word 16bit
	Force output channel
	Force output word 16bit
	Get input channel
	Get input word 16bit
	Get output channel
	Get output word 16bit
	Release all input channel
	Release all output channel
	Release input channel
	Release input word 16bit
	Release output channel
	Release output word 16bit
	Set output channel
	Set output word 16bit

	Ladder diagram handling
	Cancel live changes
	Confirm live changes
	Load a ladder task to memory
	Load live changes
	Query ladder monitor status
	Restart ladder monitor
	Save a ladder task from memory
	Start ladder monitor
	Start live changes testing
	Stop ladder monitor
	Watchdog for ladder monitor
	Watchdog for live changes

	Monitor handling
	Create a monitor
	Destroy a monitor
	Query a monitor status
	Query list of monitors
	Query monitor statistics
	Quick monitor
	Start a monitor
	Stop a monitor
	Watchdog for a monitor
	Write a monitor

	Network handling
	Change a network user
	Create a new network user
	Delete a network user
	Kill a network client
	Network login
	Network logout
	Query a keep alive session information of a network client
	Query list of network clients
	Query list of network users
	Query network information
	Query network statistics
	Start a keep alive session for a network client
	Stop a keep alive session for a network client

	Oscilloscope handling
	Create an oscilloscope
	Destroy a oscilloscope
	Start an oscilloscope
	Stop an oscilloscope
	Query an oscilloscope status
	Query list of oscilloscopes
	Query oscilloscopes statistics
	Watchdog for an oscilloscope

	Protocol handling
	Debug command
	Ping answer
	Ping command

	Register handling
	Get 16bit integer register
	Get 32bit integer register
	Get float register
	Get real register
	Get string register
	Set 16bit integer register
	Set 32bit integer register
	Set float register
	Set real register
	Set string register

	Report handling
	Command for report
	Command for system report
	Get report contents
	Get system report contents
	Query report information
	Query system report information

	RPE handling
	Begin a group authority session
	Command for an object in a group autority session
	End a group authority session
	Get information for an axes group
	Get positions for an axes group
	Jog command for an object in a group autority session
	List available axes groups
	Load an object to a group authority session
	Query status for a object in a group authority session
	Resolve an axes group
	Save an object from a group authority session
	Update positions for an object's step inline point in a group autority session
	Update positions for an object's point in a group autority session
	Watchdog for group authority session

	Variable handling
	Enumerate variables
	Force a variable
	Force a variable (safe)
	Read a variable
	Read a variable (safe)
	Register a dynamic variable
	Release a variable
	Release a variable (safe)
	Release all variables
	Release all variables (safe)
	Un-register a dynamic variable
	Un-register all dynamic variables
	Write a variable
	Write a variable (safe)

	Network interfaces
	Network interfaces
	Ethernet network example
	Modem network example

	Miscellaneus
	Messages map
	NACK error codes
	Standard variables

	Index

